These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

101 related articles for article (PubMed ID: 7662864)

  • 1. Photoactivated state of rhodopsin and how it can form.
    Fahmy K; Siebert F; Sakmar TP
    Biophys Chem; 1995; 56(1-2):171-81. PubMed ID: 7662864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Rhodopsin: a prototypical G protein-coupled receptor.
    Sakmar TP
    Prog Nucleic Acid Res Mol Biol; 1998; 59():1-34. PubMed ID: 9427838
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of the mutant visual pigment responsible for congenital night blindness: a biochemical and Fourier-transform infrared spectroscopy study.
    Zvyaga TA; Fahmy K; Siebert F; Sakmar TP
    Biochemistry; 1996 Jun; 35(23):7536-45. PubMed ID: 8652533
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Structural determinants of active state conformation of rhodopsin: molecular biophysics approaches.
    Fahmy K; Sakmar TP; Siebert F
    Methods Enzymol; 2000; 315():178-96. PubMed ID: 10736702
    [No Abstract]   [Full Text] [Related]  

  • 5. Protonation states of membrane-embedded carboxylic acid groups in rhodopsin and metarhodopsin II: a Fourier-transform infrared spectroscopy study of site-directed mutants.
    Fahmy K; Jäger F; Beck M; Zvyaga TA; Sakmar TP; Siebert F
    Proc Natl Acad Sci U S A; 1993 Nov; 90(21):10206-10. PubMed ID: 7901852
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanism of rhodopsin activation as examined with ring-constrained retinal analogs and the crystal structure of the ground state protein.
    Jang GF; Kuksa V; Filipek S; Bartl F; Ritter E; Gelb MH; Hofmann KP; Palczewski K
    J Biol Chem; 2001 Jul; 276(28):26148-53. PubMed ID: 11316815
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fourier transform infrared difference spectroscopy of rhodopsin mutants: light activation of rhodopsin causes hydrogen-bonding change in residue aspartic acid-83 during meta II formation.
    Rath P; DeCaluwé LL; Bovee-Geurts PH; DeGrip WJ; Rothschild KJ
    Biochemistry; 1993 Oct; 32(39):10277-82. PubMed ID: 8399169
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The effects of amino acid replacements of glycine 121 on transmembrane helix 3 of rhodopsin.
    Han M; Lin SW; Smith SO; Sakmar TP
    J Biol Chem; 1996 Dec; 271(50):32330-6. PubMed ID: 8943295
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Structure and function in rhodopsin: kinetic studies of retinal binding to purified opsin mutants in defined phospholipid-detergent mixtures serve as probes of the retinal binding pocket.
    Reeves PJ; Hwa J; Khorana HG
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1927-31. PubMed ID: 10051571
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The C9 methyl group of retinal interacts with glycine-121 in rhodopsin.
    Han M; Groesbeek M; Sakmar TP; Smith SO
    Proc Natl Acad Sci U S A; 1997 Dec; 94(25):13442-7. PubMed ID: 9391044
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrophobic amino acids at the cytoplasmic ends of helices 3 and 6 of rhodopsin conjointly modulate transducin activation.
    Bosch-Presegué L; Iarriccio L; Aguilà M; Toledo D; Ramon E; Cordomí A; Garriga P
    Arch Biochem Biophys; 2011 Feb; 506(2):142-9. PubMed ID: 21114958
    [TBL] [Abstract][Full Text] [Related]  

  • 12. pH dependence of photolysis intermediates in the photoactivation of rhodopsin mutant E113Q.
    Lewis JW; Szundi I; Fu WY; Sakmar TP; Kliger DS
    Biochemistry; 2000 Jan; 39(3):599-606. PubMed ID: 10642185
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Constitutive activation of opsin by mutation of methionine 257 on transmembrane helix 6.
    Han M; Smith SO; Sakmar TP
    Biochemistry; 1998 Jun; 37(22):8253-61. PubMed ID: 9609722
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Specific tryptophan UV-absorbance changes are probes of the transition of rhodopsin to its active state.
    Lin SW; Sakmar TP
    Biochemistry; 1996 Aug; 35(34):11149-59. PubMed ID: 8780519
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Transducin-dependent protonation of glutamic acid 134 in rhodopsin.
    Fahmy K; Sakmar TP; Siebert F
    Biochemistry; 2000 Aug; 39(34):10607-12. PubMed ID: 10956053
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Structure and function in rhodopsin: correct folding and misfolding in two point mutants in the intradiscal domain of rhodopsin identified in retinitis pigmentosa.
    Liu X; Garriga P; Khorana HG
    Proc Natl Acad Sci U S A; 1996 May; 93(10):4554-9. PubMed ID: 8643442
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The nature of the primary photochemical events in rhodopsin and isorhodopsin.
    Birge RR; Einterz CM; Knapp HM; Murray LP
    Biophys J; 1988 Mar; 53(3):367-85. PubMed ID: 2964878
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The roles of transmembrane domain helix-III during rhodopsin photoactivation.
    Ou WB; Yi T; Kim JM; Khorana HG
    PLoS One; 2011 Feb; 6(2):e17398. PubMed ID: 21364764
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Relocating the Active-Site Lysine in Rhodopsin: 2. Evolutionary Intermediates.
    Devine EL; Theobald DL; Oprian DD
    Biochemistry; 2016 Aug; 55(34):4864-70. PubMed ID: 27486845
    [TBL] [Abstract][Full Text] [Related]  

  • 20. FTIR spectroscopy reveals microscopic structural changes of the protein around the rhodopsin chromophore upon photoisomerization.
    Kandori H; Maeda A
    Biochemistry; 1995 Oct; 34(43):14220-9. PubMed ID: 7578021
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.