These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7662867)

  • 1. Photopigments and circadian systems of vertebrates.
    Argamaso SM; Froehlich AC; McCall MA; Nevo E; Provencio I; Foster RG
    Biophys Chem; 1995; 56(1-2):3-11. PubMed ID: 7662867
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of an ocular photopigment capable of driving pupillary constriction in mice.
    Lucas RJ; Douglas RH; Foster RG
    Nat Neurosci; 2001 Jun; 4(6):621-6. PubMed ID: 11369943
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Non-rod, non-cone photoreception in rodents and teleost fish.
    Foster RG; Hankins M; Lucas RJ; Jenkins A; Muñoz M; Thompson S; Appleford JM; Bellingham J
    Novartis Found Symp; 2003; 253():3-23; discussion 23-30, 52-5, 102-9. PubMed ID: 14712912
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Photoreceptors regulating circadian behavior: a mouse model.
    Foster RG; Argamaso S; Coleman S; Colwell CS; Lederman A; Provencio I
    J Biol Rhythms; 1993; 8 Suppl():S17-23. PubMed ID: 8274758
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Circadian regulation of iodopsin and clock is altered in the retinal degeneration chicken retina.
    Larkin P; Baehr W; Semple-Rowland SL
    Brain Res Mol Brain Res; 1999 Jul; 70(2):253-63. PubMed ID: 10407173
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The persistence of cone photoreceptors within the dorsal retina of aged retinally degenerate mice (rd/rd): implications for circadian organization.
    García-Fernández JM; Jimenez AJ; Foster RG
    Neurosci Lett; 1995 Feb; 187(1):33-6. PubMed ID: 7617296
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Circadian rhythms in mice can be regulated by photoreceptors with cone-like characteristics.
    Provencio I; Foster RG
    Brain Res; 1995 Oct; 694(1-2):183-90. PubMed ID: 8974643
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Retinal projections in mice with inherited retinal degeneration: implications for circadian photoentrainment.
    Provencio I; Cooper HM; Foster RG
    J Comp Neurol; 1998 Jun; 395(4):417-39. PubMed ID: 9619497
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Circadian photoreception in the retinally degenerate mouse (rd/rd).
    Foster RG; Provencio I; Hudson D; Fiske S; De Grip W; Menaker M
    J Comp Physiol A; 1991 Jul; 169(1):39-50. PubMed ID: 1941717
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spectral tuning of a circadian photopigment in a subterranean 'blind' mammal (Spalax ehrenbergi).
    David-Gray ZK; Cooper HM; Janssen JW; Nevo E; Foster RG
    FEBS Lett; 1999 Nov; 461(3):343-7. PubMed ID: 10567724
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Identifying the photoreceptive inputs to the mammalian circadian system using transgenic and retinally degenerate mice.
    Lucas RJ; Freedman MS; Lupi D; Munoz M; David-Gray ZK; Foster RG
    Behav Brain Res; 2001 Nov; 125(1-2):97-102. PubMed ID: 11682100
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The spatio-temporal pattern of photoreceptor degeneration in the aged rd/rd mouse retina.
    Jiménez AJ; García-Fernández JM; González B; Foster RG
    Cell Tissue Res; 1996 May; 284(2):193-202. PubMed ID: 8625386
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors.
    Freedman MS; Lucas RJ; Soni B; von Schantz M; Muñoz M; David-Gray Z; Foster R
    Science; 1999 Apr; 284(5413):502-4. PubMed ID: 10205061
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the role of mid-wavelength cones in circadian responses to light.
    Dkhissi-Benyahya O; Gronfier C; De Vanssay W; Flamant F; Cooper HM
    Neuron; 2007 Mar; 53(5):677-87. PubMed ID: 17329208
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Melanopsin is required for non-image-forming photic responses in blind mice.
    Panda S; Provencio I; Tu DC; Pires SS; Rollag MD; Castrucci AM; Pletcher MT; Sato TK; Wiltshire T; Andahazy M; Kay SA; Van Gelder RN; Hogenesch JB
    Science; 2003 Jul; 301(5632):525-7. PubMed ID: 12829787
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of circadian clock gene mutations on nonvisual photoreception in the mouse.
    Owens L; Buhr E; Tu DC; Lamprecht TL; Lee J; Van Gelder RN
    Invest Ophthalmol Vis Sci; 2012 Jan; 53(1):454-60. PubMed ID: 22159024
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular determinants of visual pigment function.
    Applebury ML
    Curr Opin Neurobiol; 1991 Aug; 1(2):263-9. PubMed ID: 1840362
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Melanopsin: an exciting photopigment.
    Hankins MW; Peirson SN; Foster RG
    Trends Neurosci; 2008 Jan; 31(1):27-36. PubMed ID: 18054803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Melanopsin retinal ganglion cells and the maintenance of circadian and pupillary responses to light in aged rodless/coneless (rd/rd cl) mice.
    Semo M; Peirson S; Lupi D; Lucas RJ; Jeffery G; Foster RG
    Eur J Neurosci; 2003 May; 17(9):1793-801. PubMed ID: 12752778
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphological characterization of the retinal degeneration in three strains of mice carrying the rd-3 mutation.
    Linberg KA; Fariss RN; Heckenlively JR; Farber DB; Fisher SK
    Vis Neurosci; 2005; 22(6):721-34. PubMed ID: 16469183
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.