These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 7662867)

  • 41. Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice.
    Lucas RJ; Hattar S; Takao M; Berson DM; Foster RG; Yau KW
    Science; 2003 Jan; 299(5604):245-7. PubMed ID: 12522249
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A role for the outer retina in development of the intrinsic pupillary light reflex in mice.
    Vugler A; Semo M; Ortín-Martínez A; Rojanasakul A; Nommiste B; Valiente-Soriano FJ; García-Ayuso D; Coffey P; Vidal-Sanz M; Gias C
    Neuroscience; 2015 Feb; 286():60-78. PubMed ID: 25433236
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Inner retinal photoreceptors (IRPs) in mammals and teleost fish.
    Foster RG; Bellingham J
    Photochem Photobiol Sci; 2004 Jun; 3(6):617-27. PubMed ID: 15170494
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Retardation of photoreceptor degeneration in the detached retina of rd1 mouse.
    Kaneko H; Nishiguchi KM; Nakamura M; Kachi S; Terasaki H
    Invest Ophthalmol Vis Sci; 2008 Feb; 49(2):781-7. PubMed ID: 18235028
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Opsin activation of transduction in the rods of dark-reared Rpe65 knockout mice.
    Fan J; Woodruff ML; Cilluffo MC; Crouch RK; Fain GL
    J Physiol; 2005 Oct; 568(Pt 1):83-95. PubMed ID: 15994181
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Regeneration of ultraviolet pigments of vertebrates.
    Yokoyama S; Radlwimmer FB; Kawamura S
    FEBS Lett; 1998 Feb; 423(2):155-8. PubMed ID: 9512349
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Transgenic mice expressing a functional human photopigment.
    Shaaban SA; Crognale MA; Calderone JB; Huang J; Jacobs GH; Deeb SS
    Invest Ophthalmol Vis Sci; 1998 May; 39(6):1036-43. PubMed ID: 9579484
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Entrainment of circadian rhythm to a photoperiod reversal shows retinal dystrophy in RPE65(-/-) mice.
    Daniels DM; Stoddart CW; Martin-Iverson MT; Lai CM; Redmond TM; Rakoczy PE
    Physiol Behav; 2003 Sep; 79(4-5):701-11. PubMed ID: 12954412
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Light-induced c-fos in melanopsin retinal ganglion cells of young and aged rodless/coneless (rd/rd cl) mice.
    Semo M; Lupi D; Peirson SN; Butler JN; Foster RG
    Eur J Neurosci; 2003 Dec; 18(11):3007-17. PubMed ID: 14656296
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Predicting peak spectral sensitivities of vertebrate cone visual pigments using atomistic molecular simulations.
    Patel JS; Brown CJ; Ytreberg FM; Stenkamp DL
    PLoS Comput Biol; 2018 Jan; 14(1):e1005974. PubMed ID: 29364888
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Cone cells fail to develop normally in transgenic mice showing ablation of rod photoreceptor cells.
    Usukura J; Khoo W; Abe T; Breitman ML; Shinohara T
    Cell Tissue Res; 1994 Jan; 275(1):79-90. PubMed ID: 8118849
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Mapping quantitative trait loci affecting circadian photosensitivity in retinally degenerate mice.
    Yoshimura T; Yokota Y; Ishikawa A; Yasuo S; Hayashi N; Suzuki T; Okabayashi N; Namikawa T; Ebihara S
    J Biol Rhythms; 2002 Dec; 17(6):512-9. PubMed ID: 12465884
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Amino acid replacements and wavelength absorption of visual pigments in vertebrates.
    Yokoyama S
    Mol Biol Evol; 1995 Jan; 12(1):53-61. PubMed ID: 7877496
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Neither functional rod photoreceptors nor rod or cone outer segments are required for the photic inhibition of pineal melatonin.
    Lucas RJ; Foster RG
    Endocrinology; 1999 Apr; 140(4):1520-4. PubMed ID: 10098483
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Rod and cone opsin families differ in spectral tuning domains but not signal transducing domains as judged by saturated evolutionary trace analysis.
    Carleton KL; Spady TC; Cote RH
    J Mol Evol; 2005 Jul; 61(1):75-89. PubMed ID: 15988624
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Opsin distribution and synthesis in degenerating photoreceptors of rd mutant mice.
    Nir I; Agarwal N; Sagie G; Papermaster DS
    Exp Eye Res; 1989 Sep; 49(3):403-21. PubMed ID: 2529133
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Melanopsin-dependent persistence and photopotentiation of murine pupillary light responses.
    Zhu Y; Tu DC; Denner D; Shane T; Fitzgerald CM; Van Gelder RN
    Invest Ophthalmol Vis Sci; 2007 Mar; 48(3):1268-75. PubMed ID: 17325172
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Opsin, G-protein and 48-kDa protein in normal and rd mouse retinas: developmental expression of mRNAs and proteins and light/dark cycling of mRNAs.
    Bowes C; van Veen T; Farber DB
    Exp Eye Res; 1988 Sep; 47(3):369-90. PubMed ID: 2846333
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Adaptive loss of ultraviolet-sensitive/violet-sensitive (UVS/VS) cone opsin in the blind mole rat (Spalax ehrenbergi).
    David-Gray ZK; Bellingham J; Munoz M; Avivi A; Nevo E; Foster RG
    Eur J Neurosci; 2002 Oct; 16(7):1186-94. PubMed ID: 12405979
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of Rds abundance on cone outer segment morphogenesis, photoreceptor gene expression, and outer limiting membrane integrity.
    Farjo R; Fliesler SJ; Naash MI
    J Comp Neurol; 2007 Oct; 504(6):619-30. PubMed ID: 17722028
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.