These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7662874)

  • 1. Computational studies of the early intermediates of the bacteriorhodopsin photocycle.
    Engels M; Gerwert K; Bashford D
    Biophys Chem; 1995; 56(1-2):95-104. PubMed ID: 7662874
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics study of the M412 intermediate of bacteriorhodopsin.
    Xu D; Sheves M; Schulten K
    Biophys J; 1995 Dec; 69(6):2745-60. PubMed ID: 8599681
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Catalysis of Ground State cis[Formula: see text] trans Isomerization of Bacteriorhodopsin's Retinal Chromophore by a Hydrogen-Bond Network.
    Elghobashi-Meinhardt N; Phatak P; Bondar AN; Elstner M; Smith JC
    J Membr Biol; 2018 Jun; 251(3):315-327. PubMed ID: 29516110
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Atomic resolution structures of bacteriorhodopsin photocycle intermediates: the role of discrete water molecules in the function of this light-driven ion pump.
    Luecke H
    Biochim Biophys Acta; 2000 Aug; 1460(1):133-56. PubMed ID: 10984596
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics study of early picosecond events in the bacteriorhodopsin photocycle: dielectric response, vibrational cooling and the J, K intermediates.
    Xu D; Martin C; Schulten K
    Biophys J; 1996 Jan; 70(1):453-60. PubMed ID: 8770221
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Molecular dynamics study of the proton pump cycle of bacteriorhodopsin.
    Zhou F; Windemuth A; Schulten K
    Biochemistry; 1993 Mar; 32(9):2291-306. PubMed ID: 8443172
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Connectivity of the retinal Schiff base to Asp85 and Asp96 during the bacteriorhodopsin photocycle: the local-access model.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biophys J; 1998 Sep; 75(3):1455-65. PubMed ID: 9726947
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of the proton release channel of bacteriorhodopsin in different intermediates of the photo cycle. A molecular dynamics study.
    Nagel J; Edholm O; Berger O; Jähnig F
    Biochemistry; 1997 Mar; 36(10):2875-83. PubMed ID: 9062117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Local-access model for proton transfer in bacteriorhodopsin.
    Brown LS; Dioumaev AK; Needleman R; Lanyi JK
    Biochemistry; 1998 Mar; 37(11):3982-93. PubMed ID: 9521720
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Crystallographic structure of the retinal and the protein after deprotonation of the Schiff base: the switch in the bacteriorhodopsin photocycle.
    Lanyi J; Schobert B
    J Mol Biol; 2002 Aug; 321(4):727-37. PubMed ID: 12206786
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Replacement effects of neutral amino acid residues of different molecular volumes in the retinal binding cavity of bacteriorhodopsin on the dynamics of its primary process.
    Logunov SL; el-Sayed MA; Lanyi JK
    Biophys J; 1996 Jun; 70(6):2875-81. PubMed ID: 8744325
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanism of proton transport in bacteriorhodopsin from crystallographic structures of the K, L, M1, M2, and M2' intermediates of the photocycle.
    Lanyi JK; Schobert B
    J Mol Biol; 2003 Apr; 328(2):439-50. PubMed ID: 12691752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bacteriorhodopsin: a high-resolution structural view of vectorial proton transport.
    Neutze R; Pebay-Peyroula E; Edman K; Royant A; Navarro J; Landau EM
    Biochim Biophys Acta; 2002 Oct; 1565(2):144-67. PubMed ID: 12409192
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Understanding structure and function in the light-driven proton pump bacteriorhodopsin.
    Lanyi JK
    J Struct Biol; 1998 Dec; 124(2-3):164-78. PubMed ID: 10049804
    [TBL] [Abstract][Full Text] [Related]  

  • 15. On modeling the vibrational spectra of 14-s-cis retinal conformers in bacteriorhodopsin.
    Mathies RA; Li XY
    Biophys Chem; 1995; 56(1-2):47-55. PubMed ID: 7662868
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Coupling of the reisomerization of the retinal, proton uptake, and reprotonation of Asp-96 in the N photointermediate of bacteriorhodopsin.
    Dioumaev AK; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 2001 Sep; 40(38):11308-17. PubMed ID: 11560478
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A linkage of the pKa's of asp-85 and glu-204 forms part of the reprotonation switch of bacteriorhodopsin.
    Richter HT; Brown LS; Needleman R; Lanyi JK
    Biochemistry; 1996 Apr; 35(13):4054-62. PubMed ID: 8672439
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Proton transfer from Asp-96 to the bacteriorhodopsin Schiff base is caused by a decrease of the pKa of Asp-96 which follows a protein backbone conformational change.
    Cao Y; Váró G; Klinger AL; Czajkowsky DM; Braiman MS; Needleman R; Lanyi JK
    Biochemistry; 1993 Mar; 32(8):1981-90. PubMed ID: 8448157
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Titration of the bacteriorhodopsin Schiff base involves titration of an additional protein residue.
    Zadok U; Asato AE; Sheves M
    Biochemistry; 2005 Jun; 44(23):8479-85. PubMed ID: 15938637
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The residues Leu 93 and Asp 96 act independently in the bacteriorhodopsin photocycle: studies with the leu 93-->Ala, Asp 96-->Asn double mutant.
    Delaney JK; Subramaniam S
    Biophys J; 1996 May; 70(5):2366-72. PubMed ID: 9172761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.