BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

192 related articles for article (PubMed ID: 7663519)

  • 21. Human eosinophil cationic protein. Molecular cloning of a cytotoxin and helminthotoxin with ribonuclease activity.
    Rosenberg HF; Ackerman SJ; Tenen DG
    J Exp Med; 1989 Jul; 170(1):163-76. PubMed ID: 2473157
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Rapid evolution of the ribonuclease A superfamily: adaptive expansion of independent gene clusters in rats and mice.
    Singhania NA; Dyer KD; Zhang J; Deming MS; Bonville CA; Domachowske JB; Rosenberg HF
    J Mol Evol; 1999 Dec; 49(6):721-8. PubMed ID: 10594173
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Parallel functional changes in the digestive RNases of ruminants and colobines by divergent amino acid substitutions.
    Zhang J
    Mol Biol Evol; 2003 Aug; 20(8):1310-7. PubMed ID: 12777504
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Ribonuclease k6: chromosomal mapping and divergent rates of evolution within the RNase A gene superfamily.
    Deming MS; Dyer KD; Bankier AT; Piper MB; Dear PH; Rosenberg HF
    Genome Res; 1998 Jun; 8(6):599-607. PubMed ID: 9647635
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The molecular biology of eosinophil granule proteins.
    Hamann KJ; Barker RL; Ten RM; Gleich GJ
    Int Arch Allergy Appl Immunol; 1991; 94(1-4):202-9. PubMed ID: 1657792
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Comparative toxicity of purified human eosinophil granule proteins for newborn larvae of Trichinella spiralis.
    Hamann KJ; Barker RL; Loegering DA; Gleich GJ
    J Parasitol; 1987 Jun; 73(3):523-9. PubMed ID: 3598802
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Eosinophil granule proteins activate human heart mast cells.
    Patella V; de Crescenzo G; Marinò I; Genovese A; Adt M; Gleich GJ; Marone G
    J Immunol; 1996 Aug; 157(3):1219-25. PubMed ID: 8757629
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Toxicity of an antitumor ribonuclease to Purkinje neurons.
    Newton DL; Walbridge S; Mikulski SM; Ardelt W; Shogen K; Ackerman SJ; Rybak SM; Youle RJ
    J Neurosci; 1994 Feb; 14(2):538-44. PubMed ID: 8301353
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Evolution of antiviral activity in the ribonuclease A gene superfamily: evidence for a specific interaction between eosinophil-derived neurotoxin (EDN/RNase 2) and respiratory syncytial virus.
    Domachowske JB; Bonville CA; Dyer KD; Rosenberg HF
    Nucleic Acids Res; 1998 Dec; 26(23):5327-32. PubMed ID: 9826755
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Towards the rational design of antimicrobial proteins: single point mutations can switch on bactericidal and agglutinating activities on the RNase A superfamily lineage.
    Pulido D; Moussaoui M; Nogués MV; Torrent M; Boix E
    FEBS J; 2013 Nov; 280(22):5841-52. PubMed ID: 23992292
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Gene structure and enzymatic activity of mouse eosinophil-associated ribonuclease 2.
    McDevitt AL; Deming MS; Rosenberg HF; Dyer KD
    Gene; 2001 Apr; 267(1):23-30. PubMed ID: 11311552
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Expression and purification of recombinant rat eosinophil-associated ribonucleases, homologues of human eosinophil cationic protein and eosinophil-derived neurotoxin, and their characterization.
    Nakajima M; Hirakata M; Nittoh T; Ishihara K; Ohuchi K
    Int Arch Allergy Immunol; 2001 Jul; 125(3):241-9. PubMed ID: 11490157
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Origin and evolution of gene for prolactin-induced protein.
    Kitano T; Tian W; Umetsu K; Yuasa I; Yamazaki K; Saitou N; Osawa M
    Gene; 2006 Nov; 383():64-70. PubMed ID: 16949771
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Pancreatic-type ribonuclease 1 gene duplications in rat species.
    Dubois JY; Jekel PA; Mulder PP; Bussink AP; Catzeflis FM; Carsana A; Beintema JJ
    J Mol Evol; 2002 Nov; 55(5):522-33. PubMed ID: 12399926
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structure of eosinophil cationic protein at 2.4 A resolution.
    Boix E; Leonidas DD; Nikolovski Z; Nogués MV; Cuchillo CM; Acharya KR
    Biochemistry; 1999 Dec; 38(51):16794-801. PubMed ID: 10606511
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Interactions of eosinophil granule proteins with skin: limits of detection, persistence, and vasopermeabilization.
    Davis MD; Plager DA; George TJ; Weiss EA; Gleich GJ; Leiferman KM
    J Allergy Clin Immunol; 2003 Nov; 112(5):988-94. PubMed ID: 14610493
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Localization of the human eosinophil Charcot-Leyden crystal protein (lysophospholipase) gene (CLC) to chromosome 19 and the human ribonuclease 2 (eosinophil-derived neurotoxin) and ribonuclease 3 (eosinophil cationic protein) genes (RNS2 and RNS3) to chromosome 14.
    Mastrianni DM; Eddy RL; Rosenberg HF; Corrette SE; Shows TB; Tenen DG; Ackerman SJ
    Genomics; 1992 May; 13(1):240-2. PubMed ID: 1577491
    [No Abstract]   [Full Text] [Related]  

  • 38. Duplication and divergence of 2 distinct pancreatic ribonuclease genes in leaf-eating African and Asian colobine monkeys.
    Schienman JE; Holt RA; Auerbach MR; Stewart CB
    Mol Biol Evol; 2006 Aug; 23(8):1465-79. PubMed ID: 16751256
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Three-dimensional crystal structure of human eosinophil cationic protein (RNase 3) at 1.75 A resolution.
    Mallorquí-Fernández G; Pous J; Peracaula R; Aymamí J; Maeda T; Tada H; Yamada H; Seno M; de Llorens R; Gomis-Rüth FX; Coll M
    J Mol Biol; 2000 Jul; 300(5):1297-307. PubMed ID: 10903870
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Enhanced expression of the eosinophil-derived neurotoxin ribonuclease (RNS2) gene requires interaction between the promoter and intron.
    Tiffany HL; Handen JS; Rosenberg HF
    J Biol Chem; 1996 May; 271(21):12387-93. PubMed ID: 8647842
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.