BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

111 related articles for article (PubMed ID: 7663967)

  • 1. Monoamines in the parabrachial nucleus of the cardiomyopathic hamster.
    Allen GV; Zhou J; Hopkins DA
    Brain Res; 1995 May; 680(1-2):117-27. PubMed ID: 7663967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Distributions of tyrosine hydroxylase-, dopamine-beta-hydroxylase-, and phenylethanolamine-N-methyltransferase-immunoreactive neurons in the brain of the hamster (Mesocricetus auratus).
    Vincent SR
    J Comp Neurol; 1988 Feb; 268(4):584-99. PubMed ID: 2895779
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Reduction of ventricular M2 muscarinic receptors in cardiomyopathic hamster (CHF 147) at the necrotic stage of the myopathy.
    Wilkinson M; Horackova M; Giles A
    Pflugers Arch; 1994 Apr; 426(6):516-23. PubMed ID: 8052521
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Alterations in brain serotonin during congestive heart failure in the cardiomyopathic Syrian hamster.
    Sole MJ; Shum A; VanLoon GR
    Cardiovasc Res; 1978 Jun; 12(6):573-5. PubMed ID: 698991
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [3H]-nitrendipine binding sites in normal and cardiomyopathic hamsters: absence of a selective increase in putative calcium channels in cardiomyopathic hearts.
    Howlett SE; Rafuse VF; Gordon T
    Cardiovasc Res; 1988 Nov; 22(11):840-6. PubMed ID: 2855722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The cardiomyopathy of the Syrian hamster (strain BIO 8262)--hypertrophic or dystrophic?
    Mohr W; Lossnitzer K; Schwarz J
    Basic Res Cardiol; 1978; 73(1):34-46. PubMed ID: 148886
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interaction between AT1 and alpha1-adrenergic receptors in cardiomyopathic hamsters.
    Crespo MJ
    J Card Fail; 2000 Sep; 6(3):257-63. PubMed ID: 10997753
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molecular cloning of hamster brain and atrial natriuretic peptide cDNAs. Cardiomyopathic hamsters are useful models for brain and atrial natriuretic peptides.
    Tamura N; Ogawa Y; Itoh H; Arai H; Suga S; Nakagawa O; Komatsu Y; Kishimoto I; Takaya K; Yoshimasa T
    J Clin Invest; 1994 Sep; 94(3):1059-68. PubMed ID: 8083346
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Verapamil preserves myocardial contractility in the hereditary cardiomyopathy of the Syrian hamster.
    Rouleau JL; Chuck LH; Hollosi G; Kidd P; Sievers RE; Wikman-Coffelt J; Parmley WW
    Circ Res; 1982 Mar; 50(3):405-12. PubMed ID: 6460569
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Age related changes in contractility and alpha 1 adrenergic responsiveness of myocardium from normal hamsters and hamsters with hereditary cardiomyopathy.
    Li K; Rouleau JL
    Cardiovasc Res; 1993 Jun; 27(6):968-73. PubMed ID: 8221787
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Evaluation of the hereditary Syrian hamster cardiomyopathy by 31P nuclear magnetic resonance spectroscopy: improvement after acute verapamil therapy.
    Markiewicz W; Wu SS; Parmley WW; Higgins CB; Sievers R; James TL; Wikman-Coffelt J; Jasmin G
    Circ Res; 1986 Dec; 59(6):597-604. PubMed ID: 3815756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. RNA transcription and translation in the hearts of normal and cardiomyopathic Syrian hamsters.
    McCully JD; Mably JD; Sole MJ; Liew CC
    Biochem Cell Biol; 1991 Jan; 69(1):88-92. PubMed ID: 1710470
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modulation of left ventricular iodine-125-MIBG accumulation in cardiomyopathic Syrian hamsters using the renin-angiotensin system.
    Takatsu H; Uno Y; Fujiwara H
    J Nucl Med; 1995 Jun; 36(6):1055-61. PubMed ID: 7769428
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic changes of ethanolamine base exchange activity and increase of viscosity in sarcolemmal membranes of hamster heart during development of cardiomyopathy.
    Vecchini A; Binaglia L; Di Nardo P; Bartoli M; Minieri M; Tallarida G
    Mol Cell Biochem; 1992 Oct; 116(1-2):89-93. PubMed ID: 1480158
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in cyclic nucleotide phosphodiesterase activity and calmodulin concentration in heart muscle of cardiomyopathic hamsters.
    Masunaga R; Nagasaka A; Sawai Y; Hayakawa N; Nakai A; Hotta K; Kato Y; Hishida H; Takahashi H; Naka M; Shimada Y; Tanaka T; Hidaka H; Itoh M
    J Mol Cell Cardiol; 2004 Sep; 37(3):767-74. PubMed ID: 15350849
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Cardiac carnitine deficiency and altered carnitine transport in cardiomyopathic hamsters.
    York CM; Cantrell CR; Borum PR
    Arch Biochem Biophys; 1983 Mar; 221(2):526-33. PubMed ID: 6838206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Arrhythmogenic properties of the ventricular myocardium in cardiomyopathic Syrian hamster, BIO 14.6 strain.
    Hano O; Mitsuoka T; Matsumoto Y; Ahmed R; Hirata M; Hirata T; Mori M; Yano K; Hashiba K
    Cardiovasc Res; 1991 Jan; 25(1):49-57. PubMed ID: 2054830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A possible change in the rate-limiting step for cardiac norepinephrine synthesis in the cardiomyopathic Syrian hamster.
    Sole MJ; Kamble AB; Hussain MN
    Circ Res; 1977 Dec; 41(6):814-7. PubMed ID: 21758
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Morphometric analysis of cultured normal and cardiomyopathic hamster heart cells after immunofluorescent staining for tubulin and alpha-actinin.
    Li J; Robertson DR; Lemanski LF
    Acta Histochem; 1994 Mar; 96(1):33-42. PubMed ID: 7518174
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ultrastructural localization of calcium in the myocardium of cardiomyopathic syrian hamsters.
    Olbrich HG; Borgers M; Thoné F; Frotscher M; Mutschler E; Schneider M; Kober G; Kaltenbach M
    J Mol Cell Cardiol; 1988 Aug; 20(8):753-62. PubMed ID: 3221410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.