These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 7663972)

  • 1. Biosynthesis and maintenance of GSH in primary astrocyte cultures: role of L-cystine and ascorbate.
    O'Connor E; Devesa A; García C; Puertes IR; Pellín A; Viña JR
    Brain Res; 1995 May; 680(1-2):157-63. PubMed ID: 7663972
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Na+ dependent glutamate transporters (EAAT1, EAAT2, and EAAT3) in primary astrocyte cultures: effect of oxidative stress.
    Miralles VJ; Martínez-López I; Zaragozá R; Borrás E; García C; Pallardó FV; Viña JR
    Brain Res; 2001 Dec; 922(1):21-9. PubMed ID: 11730698
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ebselen attenuates oxidative stress in ischemic astrocytes depleted of glutathione. Comparison with glutathione precursors.
    Gabryel B; Małecki A
    Pharmacol Rep; 2006; 58(3):381-92. PubMed ID: 16845212
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Interleukin-1β protects astrocytes against oxidant-induced injury via an NF-κB-dependent upregulation of glutathione synthesis.
    He Y; Jackman NA; Thorn TL; Vought VE; Hewett SJ
    Glia; 2015 Sep; 63(9):1568-80. PubMed ID: 25880604
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Maintenance of GSH content in primary astrocyte cultures under oxidative stress conditions.
    Viña JR; Devesa A; Garcia C; Puertes I; O'Connor E
    Biochem Soc Trans; 1993 May; 21(2):84S. PubMed ID: 8359539
    [No Abstract]   [Full Text] [Related]  

  • 6. The transsulfuration pathway: a source of cysteine for glutathione in astrocytes.
    McBean GJ
    Amino Acids; 2012 Jan; 42(1):199-205. PubMed ID: 21369939
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Regulation of the system x(C)- cystine/glutamate exchanger by intracellular glutathione levels in rat astrocyte primary cultures.
    Seib TM; Patel SA; Bridges RJ
    Glia; 2011 Oct; 59(10):1387-401. PubMed ID: 21590811
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Turnover of cellular glutathione in isolated rat-kidney cells. Role of cystine and methionine.
    Moldéus P; Ormstad K; Reed DJ
    Eur J Biochem; 1981 May; 116(1):13-6. PubMed ID: 7250117
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Glutathione efflux from cultured astrocytes.
    Sagara J; Makino N; Bannai S
    J Neurochem; 1996 May; 66(5):1876-81. PubMed ID: 8780013
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Co-culture of neurones with glutathione deficient astrocytes leads to increased neuronal susceptibility to nitric oxide and increased glutamate-cysteine ligase activity.
    Gegg ME; Clark JB; Heales SJ
    Brain Res; 2005 Mar; 1036(1-2):1-6. PubMed ID: 15725395
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Coordinate regulation of glutathione metabolism in astrocytes by Nrf2.
    Sun X; Erb H; Murphy TH
    Biochem Biophys Res Commun; 2005 Jan; 326(2):371-7. PubMed ID: 15582588
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regulation of L-cystine transport and intracellular GSH level by a nitric oxide donor in primary cultured rabbit conjunctival epithelial cell layers.
    Gukasyan HJ; Kannan R; Lee VH; Kim KJ
    Invest Ophthalmol Vis Sci; 2003 Mar; 44(3):1202-10. PubMed ID: 12601050
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Accumulation of intracellular ascorbate from dehydroascorbic acid by astrocytes is decreased after oxidative stress and restored by propofol.
    Daskalopoulos R; Korcok J; Tao L; Wilson JX
    Glia; 2002 Aug; 39(2):124-32. PubMed ID: 12112364
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sodium-ascorbate cotransport controls intracellular ascorbate concentration in primary astrocyte cultures expressing the SVCT2 transporter.
    Korcok J; Yan R; Siushansian R; Dixon SJ; Wilson JX
    Brain Res; 2000 Oct; 881(2):144-51. PubMed ID: 11036152
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Astrocytes provide cysteine to neurons by releasing glutathione.
    Wang XF; Cynader MS
    J Neurochem; 2000 Apr; 74(4):1434-42. PubMed ID: 10737599
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Regulation of System xc(-) by Pharmacological Manipulation of Cellular Thiols.
    Albano R; Raddatz NJ; Hjelmhaug J; Baker DA; Lobner D
    Oxid Med Cell Longev; 2015; 2015():269371. PubMed ID: 25949770
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Induction of cystine transport via system x-c and maintenance of intracellular glutathione levels in pancreatic acinar and islet cell lines.
    Sato H; Kuriyama-Matsumura K; Siow RC; Ishii T; Bannai S; Mann GE
    Biochim Biophys Acta; 1998 Nov; 1414(1-2):85-94. PubMed ID: 9804903
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of sulfur amino acid utilization for GSH synthesis between HepG2 cells and cultured rat hepatocytes.
    Lu SC; Huang HY
    Biochem Pharmacol; 1994 Mar; 47(5):859-69. PubMed ID: 8135861
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Neuroprotective effects of levetiracetam target xCT in astrocytes in parkinsonian mice.
    Miyazaki I; Murakami S; Torigoe N; Kitamura Y; Asanuma M
    J Neurochem; 2016 Jan; 136(1):194-204. PubMed ID: 26485447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification and characterization of uptake systems for cystine and cysteine in cultured astrocytes and neurons: evidence for methylmercury-targeted disruption of astrocyte transport.
    Shanker G; Aschner M
    J Neurosci Res; 2001 Dec; 66(5):998-1002. PubMed ID: 11746429
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.