These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 7664051)

  • 1. Structural water in oxidized and reduced horse heart cytochrome c.
    Qi PX; Urbauer JL; Fuentes EJ; Leopold MF; Wand AJ
    Nat Struct Biol; 1994 Jun; 1(6):378-82. PubMed ID: 7664051
    [TBL] [Abstract][Full Text] [Related]  

  • 2. ePHOGSY experiments on a paramagnetic protein: location of the catalytic water molecule in the heme crevice of the oxidized form of horse heart cytochrome c.
    Bertini I; Dalvit C; Huber JG; Luchinat C; Piccioli M
    FEBS Lett; 1997 Sep; 415(1):45-8. PubMed ID: 9326366
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protein hydration and location of water molecules in oxidized horse heart cytochrome c by (1)H NMR.
    Bertini I; Huber JG; Luchinat C; Piccioli M
    J Magn Reson; 2000 Nov; 147(1):1-8. PubMed ID: 11042041
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Solution structure of horse heart ferricytochrome c and detection of redox-related structural changes by high-resolution 1H NMR.
    Qi PX; Beckman RA; Wand AJ
    Biochemistry; 1996 Sep; 35(38):12275-86. PubMed ID: 8823161
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Local structure of cytochrome c from horse heart in solution. Conformational analysis using data of two-dimensional nuclear Overhauser effect spectroscopy].
    Andrianov AM; Akhrem AA
    Mol Biol (Mosk); 1991; 25(1):194-204. PubMed ID: 1654519
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A high-resolution NMR study of long-lived water molecules in both oxidation states of a minimal cytochrome c.
    Bertini I; Ghosh K; Rosato A; Vasos PR
    Biochemistry; 2003 Apr; 42(12):3457-63. PubMed ID: 12653549
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Solution structure of reduced horse heart cytochrome c.
    Banci L; Bertini I; Huber JG; Spyroulias GA; Turano P
    J Biol Inorg Chem; 1999 Feb; 4(1):21-31. PubMed ID: 10499099
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Solution structure of horse heart ferrocytochrome c determined by high-resolution NMR and restrained simulated annealing.
    Qi PX; Di Stefano DL; Wand AJ
    Biochemistry; 1994 May; 33(21):6408-17. PubMed ID: 8204573
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of protein structures in solution using local conformations derived from NMR data: application to cytochrome c.
    Kar L; Sherman SA; Johnson ME
    J Biomol Struct Dyn; 1994 Dec; 12(3):527-58. PubMed ID: 7727058
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of the solution and crystal structures of mitochondrial cytochrome c. Analysis of paramagnetic shifts in the nuclear magnetic resonance spectrum of ferricytochrome c.
    Williams G; Clayden NJ; Moore GR; Williams RJ
    J Mol Biol; 1985 Jun; 183(3):447-60. PubMed ID: 2991533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A molecular dynamics study in explicit water of the reduced and oxidized forms of yeast iso-1-cytochrome c--solvation and dynamic properties of the two oxidation states.
    Banci L; Gori-Savellini G; Turano P
    Eur J Biochem; 1997 Nov; 249(3):716-23. PubMed ID: 9395318
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Water penetration and escape in proteins.
    García AE; Hummer G
    Proteins; 2000 Feb; 38(3):261-72. PubMed ID: 10713987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cytochrome c: observation of numerous single-carbon sites of the reduced and oxidized species by means of natural-abundance 13C nuclear magnetic resonance spectroscopy.
    Oldfield E; Allerhand A
    Proc Natl Acad Sci U S A; 1973 Dec; 70(12):3531-5. PubMed ID: 4357878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic barriers to the folding of horse cytochrome C in the reduced state.
    Bhuyan AK; Kumar R
    Biochemistry; 2002 Oct; 41(42):12821-34. PubMed ID: 12379125
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Directional electron transfer in ruthenium-modified horse heart cytochrome c.
    Bechtold R; Kuehn C; Lepre C; Isied SS
    Nature; 1986 Jul 17-23; 322(6076):286-8. PubMed ID: 3016549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The polarity of tyrosine 67 in yeast iso-1-cytochrome c monitored by second derivative spectroscopy.
    Schroeder HR; McOdimba FA; Guillemette JG; Kornblatt JA
    Biochem Cell Biol; 1997; 75(3):191-7. PubMed ID: 9404638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The electric potential field around cytochrome c and the effect of ionic strength on reaction rates of horse cytochrome c.
    Koppenol WH; Vroonland CA; Braams R
    Biochim Biophys Acta; 1978 Sep; 503(3):499-508. PubMed ID: 210807
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Horse heart ferricytochrome c: conformation and heme configuration of low ionic strength acidic forms.
    Myer YP; Saturno AF
    J Protein Chem; 1990 Aug; 9(4):379-87. PubMed ID: 2177335
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Electrochemically induced conformational changes in cytochrome c monitored by Fourier transform infrared difference spectroscopy: influence of temperature, pH, and electrode surfaces.
    Schlereth DD; Mäntele W
    Biochemistry; 1993 Feb; 32(4):1118-26. PubMed ID: 8381024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of slaved pulses to study protein hydration.
    Bornet O; Guerlesquin F; Piotto M
    J Magn Reson; 1999 May; 138(1):107-14. PubMed ID: 10329232
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.