These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
153 related articles for article (PubMed ID: 7664084)
1. Crystal structure of a tethered dimer of HIV-1 proteinase complexed with an inhibitor. Bhat TN; Baldwin ET; Liu B; Cheng YS; Erickson JW Nat Struct Biol; 1994 Aug; 1(8):552-6. PubMed ID: 7664084 [TBL] [Abstract][Full Text] [Related]
2. X-ray structure of HIV-1 protease tethered dimer complexed to ritonavir. Das A; Rao DR; Hosur MV Protein Pept Lett; 2007; 14(6):565-8. PubMed ID: 17627597 [TBL] [Abstract][Full Text] [Related]
3. X-ray structures of retroviral proteases and their inhibitor-bound complexes. Ringe D Methods Enzymol; 1994; 241():157-77. PubMed ID: 7854176 [No Abstract] [Full Text] [Related]
4. A new way of looking at aspartic proteinase structures: a comparison of pepsin structure to other aspartic proteinases in the near active site region. Andreeva NS; Bochkarev A; Pechik I Adv Exp Med Biol; 1995; 362():19-32. PubMed ID: 8540318 [No Abstract] [Full Text] [Related]
5. Crystallographic analysis of human immunodeficiency virus 1 protease with an analog of the conserved CA-p2 substrate -- interactions with frequently occurring glutamic acid residue at P2' position of substrates. Weber IT; Wu J; Adomat J; Harrison RW; Kimmel AR; Wondrak EM; Louis JM Eur J Biochem; 1997 Oct; 249(2):523-30. PubMed ID: 9370363 [TBL] [Abstract][Full Text] [Related]
6. Design of symmetry-based, peptidomimetic inhibitors of human immunodeficiency virus protease. Kempf DJ Methods Enzymol; 1994; 241():334-54. PubMed ID: 7854187 [No Abstract] [Full Text] [Related]
7. Crystal structure of an in vivo HIV-1 protease mutant in complex with saquinavir: insights into the mechanisms of drug resistance. Hong L; Zhang XC; Hartsuck JA; Tang J Protein Sci; 2000 Oct; 9(10):1898-904. PubMed ID: 11106162 [TBL] [Abstract][Full Text] [Related]
8. Comparative analysis of the X-ray structures of HIV-1 and HIV-2 proteases in complex with CGP 53820, a novel pseudosymmetric inhibitor. Priestle JP; Fässler A; Rösel J; Tintelnot-Blomley M; Strop P; Grütter MG Structure; 1995 Apr; 3(4):381-9. PubMed ID: 7613867 [TBL] [Abstract][Full Text] [Related]
9. Structural role of the 30's loop in determining the ligand specificity of the human immunodeficiency virus protease. Swairjo MA; Towler EM; Debouck C; Abdel-Meguid SS Biochemistry; 1998 Aug; 37(31):10928-36. PubMed ID: 9692985 [TBL] [Abstract][Full Text] [Related]
10. Crystal structure of an FIV/HIV chimeric protease complexed with the broad-based inhibitor, TL-3. Heaslet H; Lin YC; Tam K; Torbett BE; Elder JH; Stout CD Retrovirology; 2007 Jan; 4():1. PubMed ID: 17212810 [TBL] [Abstract][Full Text] [Related]
11. Crystal structure of human immunodeficiency virus (HIV) type 2 protease in complex with a reduced amide inhibitor and comparison with HIV-1 protease structures. Tong L; Pav S; Pargellis C; Dô F; Lamarre D; Anderson PC Proc Natl Acad Sci U S A; 1993 Sep; 90(18):8387-91. PubMed ID: 8378311 [TBL] [Abstract][Full Text] [Related]
12. Identification of amino acid residues of the retroviral aspartic proteinases important for substrate specificity and catalytic efficiency. Cameron CE; Burstein H; Bizub-Bender D; Ridky T; Weber IT; Wlodawer A; Skalka AM; Leis J Adv Exp Med Biol; 1995; 362():399-406. PubMed ID: 8540349 [No Abstract] [Full Text] [Related]
13. Structure of HIV-1 protease with KNI-272, a tight-binding transition-state analog containing allophenylnorstatine. Baldwin ET; Bhat TN; Gulnik S; Liu B; Topol IA; Kiso Y; Mimoto T; Mitsuya H; Erickson JW Structure; 1995 Jun; 3(6):581-90. PubMed ID: 8590019 [TBL] [Abstract][Full Text] [Related]
14. Structural implications of drug-resistant mutants of HIV-1 protease: high-resolution crystal structures of the mutant protease/substrate analogue complexes. Mahalingam B; Louis JM; Hung J; Harrison RW; Weber IT Proteins; 2001 Jun; 43(4):455-64. PubMed ID: 11340661 [TBL] [Abstract][Full Text] [Related]
15. Neutron crystallography used to identify targets to improve HIV-1 protease inhibitor. Hill R Future Med Chem; 2013 Oct; 5(15):1705. PubMed ID: 24144407 [No Abstract] [Full Text] [Related]
16. Interactions of substrates and inhibitors with a family of tethered HIV-1 and HIV-2 homo- and heterodimeric proteinases. Griffiths JT; Tomchak LA; Mills JS; Graves MC; Cook ND; Dunn BM; Kay J J Biol Chem; 1994 Feb; 269(7):4787-93. PubMed ID: 8106448 [TBL] [Abstract][Full Text] [Related]
17. Inhibitor binding at the protein interface in crystals of a HIV-1 protease complex. Brynda J; Rezácová P; Fábry M; Horejsí M; Stouracová R; Soucek M; Hradílek M; Konvalinka J; Sedlácek J Acta Crystallogr D Biol Crystallogr; 2004 Nov; 60(Pt 11):1943-8. PubMed ID: 15502300 [TBL] [Abstract][Full Text] [Related]
18. Computational analysis of HIV-1 protease protein binding pockets. Ko GM; Reddy AS; Kumar S; Bailey BA; Garg R J Chem Inf Model; 2010 Oct; 50(10):1759-71. PubMed ID: 20925403 [TBL] [Abstract][Full Text] [Related]
19. Design of tight-binding human immunodeficiency virus type 1 protease inhibitors. Vacca JP Methods Enzymol; 1994; 241():311-34. PubMed ID: 7854186 [No Abstract] [Full Text] [Related]
20. Structure of HOE/BAY 793 complexed to human immunodeficiency virus (HIV-1) protease in two different crystal forms--structure/function relationship and influence of crystal packing. Lange-Savage G; Berchtold H; Liesum A; Budt KH; Peyman A; Knolle J; Sedlacek J; Fabry M; Hilgenfeld R Eur J Biochem; 1997 Sep; 248(2):313-22. PubMed ID: 9346283 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]