These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 7664122)

  • 21. Escherichia coli mutants deficient in the aspartate and aromatic amino acid aminotransferases.
    Gelfand DH; Steinberg RA
    J Bacteriol; 1977 Apr; 130(1):429-40. PubMed ID: 15983
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Active-site Arg --> Lys substitutions alter reaction and substrate specificity of aspartate aminotransferase.
    Vacca RA; Giannattasio S; Graber R; Sandmeier E; Marra E; Christen P
    J Biol Chem; 1997 Aug; 272(35):21932-7. PubMed ID: 9268327
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aspartate aminotransferase of E. coli: effects of site-directed mutagenesis on substrate recognition.
    Kagamiyama H
    J Nutr Sci Vitaminol (Tokyo); 1992; Spec No():216-9. PubMed ID: 1297744
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Quantitative chimeric analysis of six specificity determinants that differentiate Escherichia coli aspartate from tyrosine aminotransferase.
    Shaffer WA; Luong TN; Rothman SC; Kirsch JF
    Protein Sci; 2002 Dec; 11(12):2848-59. PubMed ID: 12441383
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Binding of C5-dicarboxylic substrate to aspartate aminotransferase: implications for the conformational change at the transaldimination step.
    Islam MM; Goto M; Miyahara I; Ikushiro H; Hirotsu K; Hayashi H
    Biochemistry; 2005 Jun; 44(23):8218-29. PubMed ID: 15938611
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Structures of Escherichia coli histidinol-phosphate aminotransferase and its complexes with histidinol-phosphate and N-(5'-phosphopyridoxyl)-L-glutamate: double substrate recognition of the enzyme.
    Haruyama K; Nakai T; Miyahara I; Hirotsu K; Mizuguchi H; Hayashi H; Kagamiyama H
    Biochemistry; 2001 Apr; 40(15):4633-44. PubMed ID: 11294630
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Substitution of an arginyl residue for the active site lysyl residue (Lys258) of aspartate aminotransferase.
    Kuramitsu S; Inoue Y; Tanase S; Morino Y; Kagamiyama H
    Biochem Biophys Res Commun; 1987 Jul; 146(2):416-21. PubMed ID: 3113421
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Substrate recognition mechanism of thermophilic dual-substrate enzyme.
    Ura H; Nakai T; Kawaguchi SI; Miyahara I; Hirotsu K; Kuramitsu S
    J Biochem; 2001 Jul; 130(1):89-98. PubMed ID: 11432784
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recombinant tyrosine aminotransferase from Trypanosoma cruzi: structural characterization and site directed mutagenesis of a broad substrate specificity enzyme.
    Nowicki C; Hunter GR; Montemartini-Kalisz M; Blankenfeldt W; Hecht H; Kalisz HM
    Biochim Biophys Acta; 2001 Apr; 1546(2):268-81. PubMed ID: 11295433
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Characterization of the apparent negative co-operativity induced in Escherichia coli aspartate aminotransferase by the replacement of Asp222 with alanine. Evidence for an extremely slow conformational change.
    Onuffer JJ; Kirsch JF
    Protein Eng; 1994 Mar; 7(3):413-24. PubMed ID: 8177890
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Escherichia coli aromatic amino acid aminotransferase: characterization and comparison with aspartate aminotransferase.
    Hayashi H; Inoue K; Nagata T; Kuramitsu S; Kagamiyama H
    Biochemistry; 1993 Nov; 32(45):12229-39. PubMed ID: 8218300
    [TBL] [Abstract][Full Text] [Related]  

  • 32. The purification and properties of the aspartate aminotransferase and aromatic-amino-acid aminotransferase from Escherichia coli.
    Powell JT; Morrison JF
    Eur J Biochem; 1978 Jun; 87(2):391-400. PubMed ID: 352693
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Replacement of an interdomain residue Val39 of Escherichia coli aspartate aminotransferase affects the catalytic competence without altering the substrate specificity of the enzyme.
    Hayashi H; Kuramitsu S; Kagamiyama H
    J Biochem; 1991 May; 109(5):699-704. PubMed ID: 1917893
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Janus: prediction and ranking of mutations required for functional interconversion of enzymes.
    Addington TA; Mertz RW; Siegel JB; Thompson JM; Fisher AJ; Filkov V; Fleischman NM; Suen AA; Zhang C; Toney MD
    J Mol Biol; 2013 Apr; 425(8):1378-89. PubMed ID: 23396064
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Crystal structures of Paracoccus denitrificans aromatic amino acid aminotransferase: a substrate recognition site constructed by rearrangement of hydrogen bond network.
    Okamoto A; Nakai Y; Hayashi H; Hirotsu K; Kagamiyama H
    J Mol Biol; 1998 Jul; 280(3):443-61. PubMed ID: 9665848
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Strain is more important than electrostatic interaction in controlling the pKa of the catalytic group in aspartate aminotransferase.
    Mizuguchi H; Hayashi H; Okada K; Miyahara I; Hirotsu K; Kagamiyama H
    Biochemistry; 2001 Jan; 40(2):353-60. PubMed ID: 11148029
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Role of arginine-292 in the substrate specificity of aspartate aminotransferase as examined by site-directed mutagenesis.
    Cronin CN; Kirsch JF
    Biochemistry; 1988 Jun; 27(12):4572-9. PubMed ID: 3167000
    [TBL] [Abstract][Full Text] [Related]  

  • 38. [Structural basis for differences in substrate specificity of aspartate aminotransferase isoenzymes].
    Malashkevich VN; Strokopytov BV; Borisov VV; Torchinskiĭ IuM
    Mol Biol (Mosk); 1990; 24(1):262-7. PubMed ID: 2348826
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structural basis for the catalytic activity of aspartate aminotransferase K258H lacking the pyridoxal 5'-phosphate-binding lysine residue.
    Malashkevich VN; Jäger J; Ziak M; Sauder U; Gehring H; Christen P; Jansonius JN
    Biochemistry; 1995 Jan; 34(2):405-14. PubMed ID: 7819232
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Computational approach towards the three-dimensional structure of E. coli tyrosine aminotransferase.
    Jäger J; Solmajer T; Jansonius JN
    FEBS Lett; 1992 Jul; 306(2-3):234-8. PubMed ID: 1353027
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.