These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 7664122)

  • 41. The role of residues outside the active site: structural basis for function of C191 mutants of Escherichia coli aspartate aminotransferase.
    Jeffery CJ; Gloss LM; Petsko GA; Ringe D
    Protein Eng; 2000 Feb; 13(2):105-12. PubMed ID: 10708649
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Multispecific aspartate and aromatic amino acid aminotransferases in Escherichia coli.
    Mavrides C; Orr W
    J Biol Chem; 1975 Jun; 250(11):4128-33. PubMed ID: 236311
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Structures of Escherichia coli branched-chain amino acid aminotransferase and its complexes with 4-methylvalerate and 2-methylleucine: induced fit and substrate recognition of the enzyme.
    Okada K; Hirotsu K; Hayashi H; Kagamiyama H
    Biochemistry; 2001 Jun; 40(25):7453-63. PubMed ID: 11412098
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Tyrosine aminotransferase catalyzes the final step of methionine recycling in Klebsiella pneumoniae.
    Heilbronn J; Wilson J; Berger BJ
    J Bacteriol; 1999 Mar; 181(6):1739-47. PubMed ID: 10074065
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The tyrosine-225 to phenylalanine mutation of Escherichia coli aspartate aminotransferase results in an alkaline transition in the spectrophotometric and kinetic pKa values and reduced values of both kcat and Km.
    Goldberg JM; Swanson RV; Goodman HS; Kirsch JF
    Biochemistry; 1991 Jan; 30(1):305-12. PubMed ID: 1988027
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Role of an active site residue analyzed by combination of mutagenesis and coenzyme analog.
    Yano T; Hinoue Y; Chen VJ; Metzler DE; Miyahara I; Hirotsu K; Kagamiyama H
    J Mol Biol; 1993 Dec; 234(4):1218-29. PubMed ID: 8263922
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Role of Asp222 in the catalytic mechanism of Escherichia coli aspartate aminotransferase: the amino acid residue which enhances the function of the enzyme-bound coenzyme pyridoxal 5'-phosphate.
    Yano T; Kuramitsu S; Tanase S; Morino Y; Kagamiyama H
    Biochemistry; 1992 Jun; 31(25):5878-87. PubMed ID: 1610831
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Crystal structures of Escherichia coli aspartate aminotransferase in two conformations. Comparison of an unliganded open and two liganded closed forms.
    Jäger J; Moser M; Sauder U; Jansonius JN
    J Mol Biol; 1994 Jun; 239(2):285-305. PubMed ID: 8196059
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Redesigning the substrate specificity of an enzyme by cumulative effects of the mutations of non-active site residues.
    Oue S; Okamoto A; Yano T; Kagamiyama H
    J Biol Chem; 1999 Jan; 274(4):2344-9. PubMed ID: 9891001
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The narrow substrate specificity of human tyrosine aminotransferase--the enzyme deficient in tyrosinemia type II.
    Sivaraman S; Kirsch JF
    FEBS J; 2006 May; 273(9):1920-9. PubMed ID: 16640556
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Mutation of arginine 98, which serves as a substrate-recognition site of D-amino acid aminotransferase, can be partly compensated for by mutation of tyrosine 88 to an arginyl residue.
    Kishimoto K; Yoshimura T; Soda K; Esaki N
    J Biochem; 1997 Dec; 122(6):1182-9. PubMed ID: 9498563
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Three-dimensional structures of aspartate aminotransferase from Escherichia coli and its mutant enzyme at 2.5 A resolution.
    Kamitori S; Okamoto A; Hirotsu K; Higuchi T; Kuramitsu S; Kagamiyama H; Matsuura Y; Katsube Y
    J Biochem; 1990 Aug; 108(2):175-84. PubMed ID: 2121725
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Effects of replacement of tryptophan-140 by phenylalanine or glycine on the function of Escherichia coli aspartate aminotransferase.
    Hayashi H; Inoue Y; Kuramitsu S; Morino Y; Kagamiyama H
    Biochem Biophys Res Commun; 1990 Mar; 167(2):407-12. PubMed ID: 2182010
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Site-directed mutagenesis of Escherichia coli acetylglutamate kinase and aspartokinase III probes the catalytic and substrate-binding mechanisms of these amino acid kinase family enzymes and allows three-dimensional modelling of aspartokinase.
    Marco-Marín C; Ramón-Maiques S; Tavárez S; Rubio V
    J Mol Biol; 2003 Nov; 334(3):459-76. PubMed ID: 14623187
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Mutant aspartate aminotransferase (K258H) without pyridoxal-5'-phosphate-binding lysine residue. Structural and catalytic properties.
    Ziak M; Jäger J; Malashkevich VN; Gehring H; Jaussi R; Jansonius JN; Christen P
    Eur J Biochem; 1993 Feb; 211(3):475-84. PubMed ID: 8436109
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Mechanism of action of aspartate aminotransferase proposed on the basis of its spatial structure.
    Kirsch JF; Eichele G; Ford GC; Vincent MG; Jansonius JN; Gehring H; Christen P
    J Mol Biol; 1984 Apr; 174(3):497-525. PubMed ID: 6143829
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Asymmetrical synthesis of L-homophenylalanine using engineered Escherichia coli aspartate aminotransferase.
    Lo HH; Hsu SK; Lin WD; Chan NL; Hsu WH
    Biotechnol Prog; 2005; 21(2):411-5. PubMed ID: 15801779
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Contributions of the substrate-binding arginine residues to maleate-induced closure of the active site of Escherichia coli aspartate aminotransferase.
    Matharu A; Hayashi H; Kagamiyama H; Maras B; John RA
    Eur J Biochem; 2001 Mar; 268(6):1640-5. PubMed ID: 11248682
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Enzyme flexibility: a new concept in recognition of hydrophobic substrates.
    Kawaguchi S; Nobe Y; Yasuoka J; Wakamiya T; Kusumoto S; Kuramitsu S
    J Biochem; 1997 Jul; 122(1):55-63. PubMed ID: 9276671
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A multispecific quintet of aromatic aminotransferases that overlap different biochemical pathways in Pseudomonas aeruginosa.
    Whitaker RJ; Gaines CG; Jensen RA
    J Biol Chem; 1982 Nov; 257(22):13550-6. PubMed ID: 6128337
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.