These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
231 related articles for article (PubMed ID: 7664885)
1. Abscisic acid induced protection against photoinhibition of PSII correlates with enhanced activity of the xanthophyll cycle. Ivanov AG; Krol M; Maxwell D; Huner NP FEBS Lett; 1995 Aug; 371(1):61-4. PubMed ID: 7664885 [TBL] [Abstract][Full Text] [Related]
2. Photosynthesis, chlorophyll fluorescence, light-harvesting system and photoinhibition resistance of a zeaxanthin-accumulating mutant of Arabidopsis thaliana. Tardy F; Havaux M J Photochem Photobiol B; 1996 Jun; 34(1):87-94. PubMed ID: 8765663 [TBL] [Abstract][Full Text] [Related]
3. The protective function of the xanthophyll cycle in photosynthesis. Sarry JE; Montillet JL; Sauvaire Y; Havaux M FEBS Lett; 1994 Oct; 353(2):147-50. PubMed ID: 7926040 [TBL] [Abstract][Full Text] [Related]
4. Epoxidation of zeaxanthin and antheraxanthin reverses non-photochemical quenching of photosystem II chlorophyll a fluorescence in the presence of trans-thylakoid delta pH. Gilmore AM; Mohanty N; Yamamoto HY FEBS Lett; 1994 Aug; 350(2-3):271-4. PubMed ID: 8070578 [TBL] [Abstract][Full Text] [Related]
5. Chlorophyll fluorescence quenching in isolated light harvesting complexes induced by zeaxanthin. Wentworth M; Ruban AV; Horton P FEBS Lett; 2000 Apr; 471(1):71-4. PubMed ID: 10760515 [TBL] [Abstract][Full Text] [Related]
6. Carotenoid binding sites in LHCIIb. Relative affinities towards major xanthophylls of higher plants. Hobe S; Niemeier H; Bender A; Paulsen H Eur J Biochem; 2000 Jan; 267(2):616-24. PubMed ID: 10632733 [TBL] [Abstract][Full Text] [Related]
7. Photosynthetic pigment composition and photosystem II photochemistry of wheat ears. Lu Q; Lu C Plant Physiol Biochem; 2004 May; 42(5):395-402. PubMed ID: 15191742 [TBL] [Abstract][Full Text] [Related]
9. Artificially increased ascorbate content affects zeaxanthin formation but not thermal energy dissipation or degradation of antioxidants during cold-induced photooxidative stress in maize leaves. Leipner J; Stamp P; Fracheboud Y Planta; 2000 May; 210(6):964-9. PubMed ID: 10872229 [TBL] [Abstract][Full Text] [Related]
10. Analysis of the pigment stoichiometry of pigment-protein complexes from barley (Hordeum vulgare). The xanthophyll cycle intermediates occur mainly in the light-harvesting complexes of photosystem I and photosystem II. Lee AI; Thornber JP Plant Physiol; 1995 Feb; 107(2):565-74. PubMed ID: 7724673 [TBL] [Abstract][Full Text] [Related]
11. Characterization of photosynthetic pigment composition, photosystem II photochemistry and thermal energy dissipation during leaf senescence of wheat plants grown in the field. Lu C; Lu Q; Zhang J; Kuang T J Exp Bot; 2001 Sep; 52(362):1805-10. PubMed ID: 11520868 [TBL] [Abstract][Full Text] [Related]
12. Involvement of zeaxanthin and of the Cbr protein in the repair of photosystem II from photoinhibition in the green alga Dunaliella salina. Jin ES; Polle JE; Melis A Biochim Biophys Acta; 2001 Nov; 1506(3):244-59. PubMed ID: 11779558 [TBL] [Abstract][Full Text] [Related]
13. A zeaxanthin-independent nonphotochemical quenching mechanism localized in the photosystem II core complex. Finazzi G; Johnson GN; Dall'Osto L; Joliot P; Wollman FA; Bassi R Proc Natl Acad Sci U S A; 2004 Aug; 101(33):12375-80. PubMed ID: 15304641 [TBL] [Abstract][Full Text] [Related]
14. A mathematical model describing kinetics of conversion of violaxanthin to zeaxanthin via intermediate antheraxanthin by the xanthophyll cycle enzyme violaxanthin de-epoxidase. Latowski D; Burda K; Strzałka K J Theor Biol; 2000 Oct; 206(4):507-14. PubMed ID: 11013111 [TBL] [Abstract][Full Text] [Related]
15. Photochemical behavior of xanthophylls in the recombinant photosystem II antenna complex, CP26. Frank HA; Das SK; Bautista JA; Bruce D; Vasil'ev S; Crimi M; Croce R; Bassi R Biochemistry; 2001 Feb; 40(5):1220-5. PubMed ID: 11170447 [TBL] [Abstract][Full Text] [Related]
16. Energy dissipation in photosynthesis: does the quenching of chlorophyll fluorescence originate from antenna complexes of photosystem II or from the reaction center? Bukhov NG; Heber U; Wiese C; Shuvalov VA Planta; 2001 Apr; 212(5-6):749-58. PubMed ID: 11346948 [TBL] [Abstract][Full Text] [Related]
17. Temperature-induced greening of Chlorella vulgaris. The role of the cellular energy balance and zeaxanthin-dependent nonphotochemical quenching. Wilson KE; Król M; Huner NP Planta; 2003 Aug; 217(4):616-27. PubMed ID: 12905022 [TBL] [Abstract][Full Text] [Related]
18. A few molecules of zeaxanthin per reaction centre of photosystem II permit effective thermal dissipation of light energy in photosystem II of a poikilohydric moss. Bukhov NG; Kopecky J; Pfündel EE; Klughammer C; Heber U Planta; 2001 Apr; 212(5-6):739-48. PubMed ID: 11346947 [TBL] [Abstract][Full Text] [Related]
19. Determination of the stoichiometry and strength of binding of xanthophylls to the photosystem II light harvesting complexes. Ruban AV; Lee PJ; Wentworth M; Young AJ; Horton P J Biol Chem; 1999 Apr; 274(15):10458-65. PubMed ID: 10187836 [TBL] [Abstract][Full Text] [Related]
20. Dynamic properties of the minor chlorophyll a/b binding proteins of photosystem II, an in vitro model for photoprotective energy dissipation in the photosynthetic membrane of green plants. Ruban AV; Young AJ; Horton P Biochemistry; 1996 Jan; 35(3):674-8. PubMed ID: 8547246 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]