These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

219 related articles for article (PubMed ID: 7665403)

  • 1. Voluntary control of breathing does not alter vagal modulation of heart rate.
    Patwardhan AR; Evans JM; Bruce EN; Eckberg DL; Knapp CF
    J Appl Physiol (1985); 1995 Jun; 78(6):2087-94. PubMed ID: 7665403
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Override of spontaneous respiratory pattern generator reduces cardiovascular parasympathetic influence.
    Patwardhan AR; Vallurupalli S; Evans JM; Bruce EN; Knapp CF
    J Appl Physiol (1985); 1995 Sep; 79(3):1048-54. PubMed ID: 8567501
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of spontaneous vs. metronome-guided breathing on assessment of vagal modulation using RR variability.
    Bloomfield DM; Magnano A; Bigger JT; Rivadeneira H; Parides M; Steinman RC
    Am J Physiol Heart Circ Physiol; 2001 Mar; 280(3):H1145-50. PubMed ID: 11179058
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Improving estimation of cardiac vagal tone during spontaneous breathing using a paced breathing calibration.
    Wilhelm FH; Grossman P; Coyle MA
    Biomed Sci Instrum; 2004; 40():317-24. PubMed ID: 15133978
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Heart rate variability during sympatho-excitatory challenges: comparison between spontaneous and metronomic breathing.
    Patwardhan A; Evans J; Bruce E; Knapp C
    Integr Physiol Behav Sci; 2001; 36(2):109-20. PubMed ID: 11666040
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Sympathetic restraint of respiratory sinus arrhythmia: implications for vagal-cardiac tone assessment in humans.
    Taylor JA; Myers CW; Halliwill JR; Seidel H; Eckberg DL
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2804-14. PubMed ID: 11356639
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Time domain, geometrical and frequency domain analysis of cardiac vagal outflow: effects of various respiratory patterns.
    Penttilä J; Helminen A; Jartti T; Kuusela T; Huikuri HV; Tulppo MP; Coffeng R; Scheinin H
    Clin Physiol; 2001 May; 21(3):365-76. PubMed ID: 11380537
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benefits From Different Modes of Slow and Deep Breathing on Vagal Modulation.
    Ma D; Li C; Shi W; Fan Y; Liang H; Li L; Zhang Z; Yeh CH
    IEEE J Transl Eng Health Med; 2024; 12():520-532. PubMed ID: 39050620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of respiratory interval on vagal modulation of heart rate.
    Hayano J; Mukai S; Sakakibara M; Okada A; Takata K; Fujinami T
    Am J Physiol; 1994 Jul; 267(1 Pt 2):H33-40. PubMed ID: 7914066
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Breathing rates and heart rate spectrograms regarding body position in normal subjects.
    Avbelj V; Kalisnik JM; Trobec R; Gersak B
    Comput Biol Med; 2003 May; 33(3):259-66. PubMed ID: 12726804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Vagal tone is reduced during paced breathing in patients with the chronic fatigue syndrome.
    Sisto SA; Tapp W; Drastal S; Bergen M; DeMasi I; Cordero D; Natelson B
    Clin Auton Res; 1995 Jun; 5(3):139-43. PubMed ID: 7549414
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhanced cardiac vagal efferent activity does not explain training-induced bradycardia.
    Scott AS; Eberhard A; Ofir D; Benchetrit G; Dinh TP; Calabrese P; Lesiuk V; Perrault H
    Auton Neurosci; 2004 May; 112(1-2):60-8. PubMed ID: 15233931
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Important influence of respiration on human R-R interval power spectra is largely ignored.
    Brown TE; Beightol LA; Koh J; Eckberg DL
    J Appl Physiol (1985); 1993 Nov; 75(5):2310-7. PubMed ID: 8307890
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effects of metronome breathing on the variability of autonomic activity measurements.
    Driscoll D; Dicicco G
    J Manipulative Physiol Ther; 2000; 23(9):610-4. PubMed ID: 11145801
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Respiratory modulation of human autonomic rhythms.
    Badra LJ; Cooke WH; Hoag JB; Crossman AA; Kuusela TA; Tahvanainen KU; Eckberg DL
    Am J Physiol Heart Circ Physiol; 2001 Jun; 280(6):H2674-88. PubMed ID: 11356624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of deep breathing at six breaths per minute on the frequency of premature ventricular complexes.
    Prakash ES; Ravindra PN; Madanmohan ; Anilkumar R; Balachander J
    Int J Cardiol; 2006 Aug; 111(3):450-2. PubMed ID: 17004338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Exercise and diving, two conflicting stimuli influencing cardiac vagal tone in man.
    Al-Ani M; Powell L; West J; Townend J; Coote JH
    J Physiol; 1995 Dec; 489 ( Pt 2)(Pt 2):603-12. PubMed ID: 8847651
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Loss of Breathing Modulation of Heart Rate Variability in Patients with Recent and Long Standing Diabetes Mellitus Type II.
    Rivera AL; Estañol B; Fossion R; Toledo-Roy JC; Callejas-Rojas JA; Gien-López JA; Delgado-García GR; Frank A
    PLoS One; 2016; 11(11):e0165904. PubMed ID: 27802329
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heart rate variability and stroke volume variability to detect central hypovolemia during spontaneous breathing and supported ventilation in young, healthy volunteers.
    Elstad M; Walløe L
    Physiol Meas; 2015 Apr; 36(4):671-81. PubMed ID: 25799094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Hypoxia-induced vagal withdrawal is independent of the hypoxic ventilatory response in men.
    Siebenmann C; Ryrsø CK; Oberholzer L; Fisher JP; Hilsted LM; Rasmussen P; Secher NH; Lundby C
    J Appl Physiol (1985); 2019 Jan; 126(1):124-131. PubMed ID: 30496709
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.