These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
2. Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle. Kemp GJ; Taylor DJ; Radda GK NMR Biomed; 1993; 6(1):66-72. PubMed ID: 8457428 [TBL] [Abstract][Full Text] [Related]
3. Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function. van den Broek NM; Ciapaite J; Nicolay K; Prompers JJ Am J Physiol Cell Physiol; 2010 Nov; 299(5):C1136-43. PubMed ID: 20668212 [TBL] [Abstract][Full Text] [Related]
4. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study. Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696 [TBL] [Abstract][Full Text] [Related]
5. The duration of infection modifies mitochondrial oxidative capacity in rat skeletal muscle. Mizobata Y; Prechek D; Rounds JD; Robinson V; Wilmore DW; Jacobs DO J Surg Res; 1995 Jul; 59(1):165-73. PubMed ID: 7630122 [TBL] [Abstract][Full Text] [Related]
6. Abnormal ATP turnover in rat leg muscle during exercise and recovery following myocardial infarction. Thompson CH; Kemp GJ; Rajagopalan B; Radda GK Cardiovasc Res; 1995 Mar; 29(3):344-9. PubMed ID: 7781009 [TBL] [Abstract][Full Text] [Related]
7. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle. Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325 [TBL] [Abstract][Full Text] [Related]
9. Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise. Kemp GJ; Taylor DJ; Thompson CH; Hands LJ; Rajagopalan B; Styles P; Radda GK NMR Biomed; 1993; 6(5):302-10. PubMed ID: 8268062 [TBL] [Abstract][Full Text] [Related]
10. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. Kemp GJ; Meyerspeer M; Moser E NMR Biomed; 2007 Oct; 20(6):555-65. PubMed ID: 17628042 [TBL] [Abstract][Full Text] [Related]
12. Metabolic abnormalities in skeletal muscle after myocardial infarction in the rat. Thompson CH; Kemp GJ; Rajagopalan B; Radda GK Clin Sci (Lond); 1994 Oct; 87(4):403-6. PubMed ID: 7834991 [TBL] [Abstract][Full Text] [Related]
13. Kinetics of PCr to ATP and beta-ATP to beta-ADP phosphoryl conversion are modified in working rat skeletal muscle after training. Ravalec X; Le Tallec N; Carré F; de Certaines JD; Le Rumeur E MAGMA; 1999 Oct; 9(1-2):52-8. PubMed ID: 10555173 [TBL] [Abstract][Full Text] [Related]
14. Influence of cytosolic pH on in vivo assessment of human muscle mitochondrial respiration by phosphorus magnetic resonance spectroscopy. Lodi R; Kemp GJ; Iotti S; Radda GK; Barbiroli B MAGMA; 1997 Jun; 5(2):165-71. PubMed ID: 9268081 [TBL] [Abstract][Full Text] [Related]
15. Use of phosphocreatine kinetics to determine the influence of creatine on muscle mitochondrial respiration: an in vivo 31P-MRS study of oral creatine ingestion. Smith SA; Montain SJ; Zientara GP; Fielding RA J Appl Physiol (1985); 2004 Jun; 96(6):2288-92. PubMed ID: 14978006 [TBL] [Abstract][Full Text] [Related]
16. Regulation of oxidative and glycogenolytic ATP synthesis in exercising rat skeletal muscle studied by 31P magnetic resonance spectroscopy. Kemp GJ; Sanderson AL; Thompson CH; Radda GK NMR Biomed; 1996 Sep; 9(6):261-70. PubMed ID: 9073304 [TBL] [Abstract][Full Text] [Related]
17. Factors affecting the rate of phosphocreatine resynthesis following intense exercise. McMahon S; Jenkins D Sports Med; 2002; 32(12):761-84. PubMed ID: 12238940 [TBL] [Abstract][Full Text] [Related]
18. Downregulation of uncoupling protein-3 in vivo is linked to changes in muscle mitochondrial energy metabolism as a result of capsiate administration. Faraut B; Giannesini B; Matarazzo V; Marqueste T; Dalmasso C; Rougon G; Cozzone PJ; Bendahan D Am J Physiol Endocrinol Metab; 2007 May; 292(5):E1474-82. PubMed ID: 17264228 [TBL] [Abstract][Full Text] [Related]
19. Interactions of mitochondrial ATP synthesis and the creatine kinase equilibrium in skeletal muscle. Kemp GJ J Theor Biol; 1994 Oct; 170(3):239-46. PubMed ID: 7996853 [TBL] [Abstract][Full Text] [Related]
20. Calf muscle mitochondrial and glycogenolytic ATP synthesis in patients with claudication due to peripheral vascular disease analysed using 31P magnetic resonance spectroscopy. Kemp GJ; Hands LJ; Ramaswami G; Taylor DJ; Nicolaides A; Amato A; Radda GK Clin Sci (Lond); 1995 Dec; 89(6):581-90. PubMed ID: 8549076 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]