These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
202 related articles for article (PubMed ID: 7665504)
1. The C-terminal region of the alpha subunit of Escherichia coli RNA polymerase is required for transcriptional activation of the flagellar level II operons by the FlhD/FlhC complex. Liu X; Fujita N; Ishihama A; Matsumura P J Bacteriol; 1995 Sep; 177(17):5186-8. PubMed ID: 7665504 [TBL] [Abstract][Full Text] [Related]
2. The FlhD/FlhC complex, a transcriptional activator of the Escherichia coli flagellar class II operons. Liu X; Matsumura P J Bacteriol; 1994 Dec; 176(23):7345-51. PubMed ID: 7961507 [TBL] [Abstract][Full Text] [Related]
3. Interaction of the atypical prokaryotic transcription activator FlhD2C2 with early promoters of the flagellar gene hierarchy. Claret L; Hughes C J Mol Biol; 2002 Aug; 321(2):185-99. PubMed ID: 12144778 [TBL] [Abstract][Full Text] [Related]
4. Functions of the subunits in the FlhD(2)C(2) transcriptional master regulator of bacterial flagellum biogenesis and swarming. Claret L; Hughes C J Mol Biol; 2000 Nov; 303(4):467-78. PubMed ID: 11054284 [TBL] [Abstract][Full Text] [Related]
5. Extensive alanine scanning reveals protein-protein and protein-DNA interaction surfaces in the global regulator FlhD from Escherichia coli. Campos A; Matsumura P Mol Microbiol; 2001 Feb; 39(3):581-94. PubMed ID: 11169100 [TBL] [Abstract][Full Text] [Related]
6. Regulation of Escherichia coli sigma F RNA polymerase by flhD and flhC flagellar regulatory genes. Arnosti DN J Bacteriol; 1990 Jul; 172(7):4106-8. PubMed ID: 2193929 [TBL] [Abstract][Full Text] [Related]
7. Differential regulation of multiple overlapping promoters in flagellar class II operons in Escherichia coli. Liu X; Matsumura P Mol Microbiol; 1996 Aug; 21(3):613-20. PubMed ID: 8866483 [TBL] [Abstract][Full Text] [Related]
8. FliT acts as an anti-FlhD2C2 factor in the transcriptional control of the flagellar regulon in Salmonella enterica serovar typhimurium. Yamamoto S; Kutsukake K J Bacteriol; 2006 Sep; 188(18):6703-8. PubMed ID: 16952964 [TBL] [Abstract][Full Text] [Related]
9. Binding and transcriptional activation of non-flagellar genes by the Escherichia coli flagellar master regulator FlhD2C2. Stafford GP; Ogi T; Hughes C Microbiology (Reading); 2005 Jun; 151(Pt 6):1779-1788. PubMed ID: 15941987 [TBL] [Abstract][Full Text] [Related]
10. Rapid turnover of FlhD and FlhC, the flagellar regulon transcriptional activator proteins, during Proteus swarming. Claret L; Hughes C J Bacteriol; 2000 Feb; 182(3):833-6. PubMed ID: 10633123 [TBL] [Abstract][Full Text] [Related]
11. Structure and transcriptional control of the flagellar master operon of Salmonella typhimurium. Yanagihara S; Iyoda S; Ohnishi K; Iino T; Kutsukake K Genes Genet Syst; 1999 Jun; 74(3):105-11. PubMed ID: 10586519 [TBL] [Abstract][Full Text] [Related]
12. Dual regulatory pathways of flagellar gene expression by ClpXP protease in enterohaemorrhagic Escherichia coli. Kitagawa R; Takaya A; Yamamoto T Microbiology (Reading); 2011 Nov; 157(Pt 11):3094-3103. PubMed ID: 21903756 [TBL] [Abstract][Full Text] [Related]
13. Crystal structure of the global regulator FlhD from Escherichia coli at 1.8 A resolution. Campos A; Zhang RG; Alkire RW; Matsumura P; Westbrook EM Mol Microbiol; 2001 Feb; 39(3):567-80. PubMed ID: 11169099 [TBL] [Abstract][Full Text] [Related]
14. Turnover of FlhD and FlhC, master regulator proteins for Salmonella flagellum biogenesis, by the ATP-dependent ClpXP protease. Tomoyasu T; Takaya A; Isogai E; Yamamoto T Mol Microbiol; 2003 Apr; 48(2):443-52. PubMed ID: 12675803 [TBL] [Abstract][Full Text] [Related]
15. FlhD/FlhC-regulated promoters analyzed by gene array and lacZ gene fusions. Prüss BM; Liu X; Hendrickson W; Matsumura P FEMS Microbiol Lett; 2001 Apr; 197(1):91-7. PubMed ID: 11287152 [TBL] [Abstract][Full Text] [Related]
16. Gene array analysis of Yersinia enterocolitica FlhD and FlhC: regulation of enzymes affecting synthesis and degradation of carbamoylphosphate. Kapatral V; Campbell JW; Minnich SA; Thomson NR; Matsumura P; Prüß BM Microbiology (Reading); 2004 Jul; 150(Pt 7):2289-2300. PubMed ID: 15256571 [TBL] [Abstract][Full Text] [Related]
17. Ambidextrous transcriptional activation by SoxS: requirement for the C-terminal domain of the RNA polymerase alpha subunit in a subset of Escherichia coli superoxide-inducible genes. Jair KW; Fawcett WP; Fujita N; Ishihama A; Wolf RE Mol Microbiol; 1996 Jan; 19(2):307-17. PubMed ID: 8825776 [TBL] [Abstract][Full Text] [Related]
18. Two novel regulatory genes, fliT and fliZ, in the flagellar regulon of Salmonella. Kutsukake K; Ikebe T; Yamamoto S Genes Genet Syst; 1999 Dec; 74(6):287-92. PubMed ID: 10791024 [TBL] [Abstract][Full Text] [Related]
19. Transcription activation at the Escherichia coli melAB promoter: interactions of MelR with the C-terminal domain of the RNA polymerase alpha subunit. Grainger DC; Belyaeva TA; Lee DJ; Hyde EI; Busby SJ Mol Microbiol; 2004 Mar; 51(5):1311-20. PubMed ID: 14982626 [TBL] [Abstract][Full Text] [Related]
20. Cyclic AMP receptor protein and RhaR synergistically activate transcription from the L-rhamnose-responsive rhaSR promoter in Escherichia coli. Wickstrum JR; Santangelo TJ; Egan SM J Bacteriol; 2005 Oct; 187(19):6708-18. PubMed ID: 16166533 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]