These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 7665732)

  • 1. Effect of a very early monocular enucleation upon the development of the uncrossed retinofugal pathway in ferrets.
    Taylor JS; Guillery RW
    J Comp Neurol; 1995 Jun; 357(2):331-40. PubMed ID: 7665732
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effects of early prenatal monocular enucleation on the routing of uncrossed retinofugal axons and the cellular environment at the chiasm of mouse embryos.
    Chan SO; Chung KY; Taylor JS
    Eur J Neurosci; 1999 Sep; 11(9):3225-35. PubMed ID: 10510186
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Developmental changes produced in the retinofugal pathways of rats and ferrets by early monocular enucleations: the effects of age and the differences between normal and albino animals.
    Chan SO; Guillery RW
    J Neurosci; 1993 Dec; 13(12):5277-93. PubMed ID: 8254374
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chiasmatic course of temporal retinal axons in the developing ferret.
    Baker GE; Reese BE
    J Comp Neurol; 1993 Apr; 330(1):95-104. PubMed ID: 8468406
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential action of the albino mutation on two components of the rat's uncrossed retinofugal pathway.
    Chan SO; Baker GE; Guillery RW
    J Comp Neurol; 1993 Oct; 336(3):362-77. PubMed ID: 8263227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Changes in fiber order in the optic nerve and tract of rat embryos.
    Chan SO; Guillery RW
    J Comp Neurol; 1994 Jun; 344(1):20-32. PubMed ID: 8063954
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fate of uncrossed retinal projections following early or late prenatal monocular enucleation in the mouse.
    Godement P; Salaün J; Métin C
    J Comp Neurol; 1987 Jan; 255(1):97-109. PubMed ID: 3819012
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Early development of the optic chiasm in the gray short-tailed opossum, Monodelphis domestica.
    Taylor JS; Guillery RW
    J Comp Neurol; 1994 Dec; 350(1):109-21. PubMed ID: 7860795
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enzymatic removal of hyaluronan affects routing of axons in the mouse optic chiasm.
    Chan CK; Wang J; Lin L; Hao Y; Chan SO
    Neuroreport; 2007 Oct; 18(15):1533-8. PubMed ID: 17885596
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Chiasm formation in man is fundamentally different from that in the mouse.
    Neveu MM; Jeffery G
    Eye (Lond); 2007 Oct; 21(10):1264-70. PubMed ID: 17914429
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Localization of protein kinase C isoforms in the optic pathway of mouse embryos and their role in axon routing at the optic chiasm.
    Wang L; Lam JS; Zhao H; Wang J; Chan SO
    Brain Res; 2014 Aug; 1575():22-32. PubMed ID: 24863469
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Postnatal changes in the uncrossed retinal projection of pigmented and albino Syrian hamsters and the effects of monocular enucleation.
    Thompson ID; Cordery P; Holt CE
    J Comp Neurol; 1995 Jun; 357(2):181-203. PubMed ID: 7545188
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Early monocular enucleations in fetal ferrets produce a decrease of uncrossed and an increase of crossed retinofugal components: a possible model for the albino abnormality.
    Guillery RW
    J Anat; 1989 Jun; 164():73-84. PubMed ID: 2606796
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of primary visual projections occurs entirely postnatally in the fat-tailed dunnart, a marsupial mouse, Sminthopsis crassicaudata.
    Dunlop SA; Tee LB; Lund RD; Beazley LD
    J Comp Neurol; 1997 Jul; 384(1):26-40. PubMed ID: 9214538
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Foxd1 is required for proper formation of the optic chiasm.
    Herrera E; Marcus R; Li S; Williams SE; Erskine L; Lai E; Mason C
    Development; 2004 Nov; 131(22):5727-39. PubMed ID: 15509772
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The effects of monocular enucleation on ganglion cell number and terminal distribution in the ferret's retinal pathway.
    Thompson ID; Morgan JE; Henderson Z
    Eur J Neurosci; 1993 Apr; 5(4):357-67. PubMed ID: 8261115
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of exogenous hyaluronan on midline crossing and axon divergence in the optic chiasm of mouse embryos.
    Lin L; Wang J; Chan CK; Chan SO
    Eur J Neurosci; 2007 Jul; 26(1):1-11. PubMed ID: 17581255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The early development of retinal ganglion cells with uncrossed axons in the mouse: retinal position and axonal course.
    Colello RJ; Guillery RW
    Development; 1990 Mar; 108(3):515-23. PubMed ID: 2340812
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinctive pattern of organisation in the retinofugal pathway of a marsupial: II. Optic chiasm.
    Jeffery G; Harman AM
    J Comp Neurol; 1992 Nov; 325(1):57-67. PubMed ID: 1484119
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Early midline interactions are important in mouse optic chiasm formation but are not critical in man: a significant distinction between man and mouse.
    Neveu MM; Holder GE; Ragge NK; Sloper JJ; Collin JR; Jeffery G
    Eur J Neurosci; 2006 Jun; 23(11):3034-42. PubMed ID: 16819992
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.