BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 7666132)

  • 1. Fatigability, relaxation properties, and electromyographic responses of the human paralyzed soleus muscle.
    Shields RK
    J Neurophysiol; 1995 Jun; 73(6):2195-206. PubMed ID: 7666132
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Low frequency depression of H-reflexes in humans with acute and chronic spinal-cord injury.
    Schindler-Ivens S; Shields RK
    Exp Brain Res; 2000 Jul; 133(2):233-41. PubMed ID: 10968224
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Predicting human chronically paralyzed muscle force: a comparison of three mathematical models.
    Frey Law LA; Shields RK
    J Appl Physiol (1985); 2006 Mar; 100(3):1027-36. PubMed ID: 16306255
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Change in contractile properties of human muscle in relationship to the loss of power and slowing of relaxation seen with fatigue.
    Jones DA; de Ruiter CJ; de Haan A
    J Physiol; 2006 Nov; 576(Pt 3):913-22. PubMed ID: 16916911
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The first and second phases of the muscle compound action potential in the thumb are differently affected by electrical stimulation trains.
    Lanfranchi C; Rodriguez-Falces J; Place N
    J Appl Physiol (1985); 2024 May; 136(5):1122-1128. PubMed ID: 38511213
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Muscle fatigability and post-acute COVID-19 syndrome: A case study.
    Fanous J; Zero AM; Rice CL
    Physiol Rep; 2022 Aug; 10(16):e15391. PubMed ID: 35980017
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fatigability of the thenar muscles using electrical nerve stimulation with fixed stimuli count, while varying the frequency and duty cycle.
    Gkesou A; Papavasileiou A; Karagiaridis S; Kannas T; Amiridis IG; Hatzitaki V; Patikas DA
    J Electromyogr Kinesiol; 2023 Dec; 73():102838. PubMed ID: 37976607
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The Relationship Between Volitional Activation and Muscle Properties in Incomplete Spinal Cord Injury.
    Jakubowski KL; Smith AC; Elliott JM; Lee SSM
    Top Spinal Cord Inj Rehabil; 2018; 24(1):1-5. PubMed ID: 29434455
    [No Abstract]   [Full Text] [Related]  

  • 9. A guiding light for stimulating paralyzed muscles.
    Williams J
    Sci Robot; 2024 May; 9(90):eado9987. PubMed ID: 38776376
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Impaired Glucose Tolerance and Visceral Adipose Tissue Thickness among Lean and Non-Lean People with and without Spinal Cord Injury.
    Kimball AL; Petrie MA; McCue PM; Johnson KA; Shields RK
    J Funct Morphol Kinesiol; 2023 Aug; 8(3):. PubMed ID: 37606417
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Physiology of Neurogenic Obesity: Lessons from Spinal Cord Injury Research.
    McMillan DW; Bigford GE; Farkas GJ
    Obes Facts; 2023; 16(4):313-325. PubMed ID: 37231872
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute Low Force Electrically Induced Exercise Modulates Post Prandial Glycemic Markers in People with Spinal Cord Injury.
    Petrie MA; Kimball AL; Shields RK
    J Funct Morphol Kinesiol; 2022 Oct; 7(4):. PubMed ID: 36278750
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neither Postabsorptive Resting Nor Postprandial Fat Oxidation Are Related to Peak Fat Oxidation in Men With Chronic Paraplegia.
    Jacobs KA; McMillan DW; Maher JL; Bilzon JLJ; Nash MS
    Front Nutr; 2021; 8():703652. PubMed ID: 34381805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ankle continuous passive motion on soleus hypertonia in individuals with cerebral palsy: A case series.
    Chuang LL; Chuang YF; Ju YJ; Hsu AL; Chen CL; Wong AMK; Chang YJ
    Biomed J; 2022 Aug; 45(4):708-716. PubMed ID: 34332162
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exercise Interventions Targeting Obesity in Persons With Spinal Cord Injury.
    McMillan DW; Maher JL; Jacobs KA; Nash MS; Gater DR
    Top Spinal Cord Inj Rehabil; 2021; 27(1):109-120. PubMed ID: 33814889
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery Off-Kinetics Following Exhaustive Upper Body Exercise in Spinal Cord Injury.
    Murray D; Chin LMK; Cowan RE; Groah SL; Keyser RE
    Top Spinal Cord Inj Rehabil; 2020; 26(4):304-313. PubMed ID: 33536736
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cosine tuning determines plantarflexors' activities during human upright standing and is affected by incomplete spinal cord injury.
    Fok KL; Lee JW; Unger J; Chan K; Nozaki D; Musselman KE; Masani K
    J Neurophysiol; 2020 Jun; 123(6):2343-2354. PubMed ID: 32401162
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of short- and long-term electrically induced muscle exercise on gene signaling pathways, gene expression, and PGC1a methylation in men with spinal cord injury.
    Petrie MA; Sharma A; Taylor EB; Suneja M; Shields RK
    Physiol Genomics; 2020 Feb; 52(2):71-80. PubMed ID: 31869286
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Myotonic dystrophy type 1 alters muscle twitch properties, spinal reflexes, and perturbation-induced trans-cortical reflexes.
    Shields RK; Lee J; Buelow A; Petrie M; Dudley-Javoroski S; Cross S; Gutmann L; Nopoulos PC
    Muscle Nerve; 2020 Feb; 61(2):205-212. PubMed ID: 31773755
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Optimizing Neuromuscular Electrical Stimulation Pulse Width and Amplitude to Promote Central Activation in Individuals With Severe Spinal Cord Injury.
    Arpin DJ; Ugiliweneza B; Forrest G; Harkema SJ; Rejc E
    Front Physiol; 2019; 10():1310. PubMed ID: 31681016
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.