BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7666294)

  • 1. Iron acquisition by Cryptococcus neoformans.
    Vartivarian SE; Cowart RE; Anaissie EJ; Tashiro T; Sprigg HA
    J Med Vet Mycol; 1995; 33(3):151-6. PubMed ID: 7666294
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Iron assimilation in Cryptococcus neoformans.
    Jacobson ES; Vartivarian SE
    J Med Vet Mycol; 1992; 30(6):443-50. PubMed ID: 1287163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Inhibition of iron uptake from iron salts and chelates by divalent metal cations in intestinal epithelial cells.
    Yeung CK; Glahn RP; Miller DD
    J Agric Food Chem; 2005 Jan; 53(1):132-6. PubMed ID: 15631519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ferric and cupric reductase activities by iron-limited cells of the green alga Chlorella kessleri: quantification via oxygen electrode.
    Weger HG; Walker CN; Fink MB
    Physiol Plant; 2007 Oct; 131(2):322-31. PubMed ID: 18251903
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Plasma membrane ferric reductase activity of iron-limited algal cells is inhibited by ferric chelators.
    Sonier MB; Weger HG
    Biometals; 2010 Dec; 23(6):1029-42. PubMed ID: 20508972
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ternary complex formation facilitates a redox mechanism for iron release from a siderophore.
    Mies KA; Wirgau JI; Crumbliss AL
    Biometals; 2006 Apr; 19(2):115-26. PubMed ID: 16718598
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferrous iron uptake in Cryptococcus neoformans.
    Jacobson ES; Goodner AP; Nyhus KJ
    Infect Immun; 1998 Sep; 66(9):4169-75. PubMed ID: 9712764
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Iron acquisition systems of Listeria monocytogenes.
    Adams TJ; Vartivarian S; Cowart RE
    Infect Immun; 1990 Aug; 58(8):2715-8. PubMed ID: 2115028
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extracellular iron chelation in Cryptococcus neoformans.
    Jacobson ES; Petro MJ
    J Med Vet Mycol; 1987 Dec; 25(6):415-8. PubMed ID: 3325632
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of citrinin on iron-redox cycle.
    Da Lozzo EJ; Mangrich AS; Rocha ME; de Oliveira MB; Carnieri EG
    Cell Biochem Funct; 2002 Mar; 20(1):19-29. PubMed ID: 11835267
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The host-protein-independent iron uptake by Tritrichomonas foetus.
    Tachezy J; Suchan P; Schrével J; Kulda J
    Exp Parasitol; 1998 Oct; 90(2):155-63. PubMed ID: 9769245
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The reducing ability of iron chelates by NADH-cytochrome B5 reductase or cytochrome B5 responsible for NADH-supported lipid peroxidation.
    Miura A; Tampo Y; Yonaha M
    Biochem Mol Biol Int; 1995 Sep; 37(1):141-50. PubMed ID: 8653076
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The mammalian transferrin-independent iron transport system may involve a surface ferrireductase activity.
    Jordan I; Kaplan J
    Biochem J; 1994 Sep; 302 ( Pt 3)(Pt 3):875-9. PubMed ID: 7945215
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Marine siderophores and microbial iron mobilization.
    Butler A
    Biometals; 2005 Aug; 18(4):369-74. PubMed ID: 16158229
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Iron acquisition in the human fungal pathogen Cryptococcus neoformans.
    Jung WH; Do E
    Curr Opin Microbiol; 2013 Dec; 16(6):686-91. PubMed ID: 23927895
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Tritrichomonas foetus: iron acquisition from lactoferrin and transferrin.
    Tachezy J; Kulda J; Bahníková I; Suchan P; Rázga J; Schrével J
    Exp Parasitol; 1996 Jul; 83(2):216-28. PubMed ID: 8682190
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acquisition of iron bound to low molecular weight chelates by human monocyte-derived macrophages.
    Olakanmi O; Stokes JB; Britigan BE
    J Immunol; 1994 Sep; 153(6):2691-703. PubMed ID: 8077675
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron at the cell surface controls DNA synthesis in CCl 39 cells.
    Alcain FJ; Löw H; Crane FL
    Biochem Biophys Res Commun; 1994 Aug; 203(1):16-21. PubMed ID: 8074650
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel gene functions required for melanization of the human pathogen Cryptococcus neoformans.
    Walton FJ; Idnurm A; Heitman J
    Mol Microbiol; 2005 Sep; 57(5):1381-96. PubMed ID: 16102007
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ascorbate-dependent formation of hydroxyl radicals in the presence of iron chelates.
    Prabhu HR; Krishnamurthy S
    Indian J Biochem Biophys; 1993 Oct; 30(5):289-92. PubMed ID: 8144174
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.