These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
239 related articles for article (PubMed ID: 7666359)
1. Activation of ATP-dependent K+ channels by metabolic poisoning in adult mouse skeletal muscle: role of intracellular Mg(2+) and pH. Allard B; Lazdunski M; Rougier O J Physiol; 1995 Jun; 485 ( Pt 2)(Pt 2):283-96. PubMed ID: 7666359 [TBL] [Abstract][Full Text] [Related]
2. Similarity of ATP-dependent K+ channels in skeletal muscle fibres from normal and mutant mdx mice. Allard B; Rougier O J Physiol; 1997 Jan; 498 ( Pt 2)(Pt 2):319-25. PubMed ID: 9032681 [TBL] [Abstract][Full Text] [Related]
3. Mechanism of action of a K+ channel activator BRL 38227 on ATP-sensitive K+ channels in mouse skeletal muscle fibres. Hussain M; Wareham AC; Head SI J Physiol; 1994 Aug; 478 Pt 3(Pt 3):523-32. PubMed ID: 7965862 [TBL] [Abstract][Full Text] [Related]
4. Effects of levcromakalim and nucleoside diphosphates on glibenclamide-sensitive K+ channels in pig urethral myocytes. Teramoto N; McMurray G; Brading AF Br J Pharmacol; 1997 Apr; 120(7):1229-40. PubMed ID: 9105697 [TBL] [Abstract][Full Text] [Related]
5. ATP-sensitive potassium channels in smooth muscle cells from guinea pig urinary bladder. Bonev AD; Nelson MT Am J Physiol; 1993 May; 264(5 Pt 1):C1190-200. PubMed ID: 8498480 [TBL] [Abstract][Full Text] [Related]
6. Identification and properties of an ATP-sensitive K+ current in rabbit sino-atrial node pacemaker cells. Han X; Light PE; Giles WR; French RJ J Physiol; 1996 Jan; 490 ( Pt 2)(Pt 2):337-50. PubMed ID: 8821133 [TBL] [Abstract][Full Text] [Related]
7. Modulation of K+ channels by intracellular ATP in human neocortical neurons. Jiang C; Haddad GG J Neurophysiol; 1997 Jan; 77(1):93-102. PubMed ID: 9120601 [TBL] [Abstract][Full Text] [Related]
8. Pharmacological properties of ATP-sensitive K+ channels in mammalian skeletal muscle cells. Allard B; Lazdunski M Eur J Pharmacol; 1993 Jun; 236(3):419-26. PubMed ID: 8359200 [TBL] [Abstract][Full Text] [Related]
9. Two different types of potassium channels in human skeletal muscle activated by potassium channel openers. Quasthoff S; Franke C; Hatt H; Richter-Turtur M Neurosci Lett; 1990 Nov; 119(2):191-4. PubMed ID: 2126363 [TBL] [Abstract][Full Text] [Related]
10. Glyburide-sensitive K+ channels in cultured rat hippocampal neurons: activation by cromakalim and energy-depleting conditions. Politi DM; Rogawski MA Mol Pharmacol; 1991 Aug; 40(2):308-15. PubMed ID: 1715018 [TBL] [Abstract][Full Text] [Related]
11. Activation by intracellular GDP, metabolic inhibition and pinacidil of a glibenclamide-sensitive K-channel in smooth muscle cells of rat mesenteric artery. Zhang H; Bolton TB Br J Pharmacol; 1995 Feb; 114(3):662-72. PubMed ID: 7735693 [TBL] [Abstract][Full Text] [Related]
12. Calcium-activated potassium channels in native endothelial cells from rabbit aorta: conductance, Ca2+ sensitivity and block. Rusko J; Tanzi F; van Breemen C; Adams DJ J Physiol; 1992 Sep; 455():601-21. PubMed ID: 1484364 [TBL] [Abstract][Full Text] [Related]
13. Potassium channel modulation in rat portal vein by ATP depletion: a comparison with the effects of levcromakalim (BRL 38227). Noack T; Edwards G; Deitmer P; Weston AH Br J Pharmacol; 1992 Dec; 107(4):945-55. PubMed ID: 1467843 [TBL] [Abstract][Full Text] [Related]
14. Characterization of K(ATP) channels in intact mammalian skeletal muscle fibres. Barrett-Jolley R; McPherson GA Br J Pharmacol; 1998 Mar; 123(6):1103-10. PubMed ID: 9559893 [TBL] [Abstract][Full Text] [Related]
15. K channel activation by nucleotide diphosphates and its inhibition by glibenclamide in vascular smooth muscle cells. Beech DJ; Zhang H; Nakao K; Bolton TB Br J Pharmacol; 1993 Oct; 110(2):573-82. PubMed ID: 8242232 [TBL] [Abstract][Full Text] [Related]
16. Dual effects of diazoxide on ATP-K+ currents recorded from an insulin-secreting cell line. Kozlowski RZ; Hales CN; Ashford ML Br J Pharmacol; 1989 Aug; 97(4):1039-50. PubMed ID: 2676059 [TBL] [Abstract][Full Text] [Related]
17. Regulation of glibenclamide-sensitive K+ current by nucleotide phosphates in isolated rabbit pulmonary myocytes. Clapp LH Cardiovasc Res; 1995 Sep; 30(3):460-8. PubMed ID: 7585838 [TBL] [Abstract][Full Text] [Related]
18. Coexistence of two classes of glibenclamide-inhibitable ATP-regulated K+ channels in avian skeletal muscle. Fosset M; Allard B; Lazdunski M Pflugers Arch; 1995 Nov; 431(1):117-24. PubMed ID: 8584408 [TBL] [Abstract][Full Text] [Related]
19. Identification and properties of ATP-sensitive potassium channels in myocytes from rabbit Purkinje fibres. Light PE; Cordeiro JM; French RJ Cardiovasc Res; 1999 Nov; 44(2):356-69. PubMed ID: 10690312 [TBL] [Abstract][Full Text] [Related]
20. Adenosine triphosphate-dependent K currents activated by metabolic inhibition in rat ventricular myocytes differ from those elicited by the channel opener rilmakalim. Krause E; Englert H; Gögelein H Pflugers Arch; 1995 Mar; 429(5):625-35. PubMed ID: 7792140 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]