BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 7666512)

  • 21. Characterization of a replication-defective human immunodeficiency virus type 1 att site mutant that is blocked after the 3' processing step of retroviral integration.
    Chen H; Engelman A
    J Virol; 2000 Sep; 74(17):8188-93. PubMed ID: 10933731
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sequences in the human immunodeficiency virus type 1 U3 region required for in vivo and in vitro integration.
    Reicin AS; Kalpana G; Paik S; Marmon S; Goff S
    J Virol; 1995 Sep; 69(9):5904-7. PubMed ID: 7637038
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Quantitative in vitro assay for human immunodeficiency virus deoxyribonucleic acid integration.
    Carteau S; Mouscadet JF; Goulaouic H; Subra F; Auclair C
    Arch Biochem Biophys; 1993 Feb; 300(2):756-60. PubMed ID: 8434953
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human immunodeficiency virus type 1 DNA integration: fine structure target analysis using synthetic oligonucleotides.
    Hong T; Murphy E; Groarke J; Drlica K
    J Virol; 1993 Feb; 67(2):1127-31. PubMed ID: 8419642
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A stable complex between integrase and viral DNA ends mediates human immunodeficiency virus integration in vitro.
    Ellison V; Brown PO
    Proc Natl Acad Sci U S A; 1994 Jul; 91(15):7316-20. PubMed ID: 8041787
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The HIV-1 integrase monomer induces a specific interaction with LTR DNA for concerted integration.
    Pandey KK; Bera S; Grandgenett DP
    Biochemistry; 2011 Nov; 50(45):9788-96. PubMed ID: 21992419
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Two-long terminal repeat (LTR) DNA circles are a substrate for HIV-1 integrase.
    Richetta C; Thierry S; Thierry E; Lesbats P; Lapaillerie D; Munir S; Subra F; Leh H; Deprez E; Parissi V; Delelis O
    J Biol Chem; 2019 May; 294(20):8286-8295. PubMed ID: 30971426
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Genetic analysis of human immunodeficiency virus type 1 integrase and the U3 att site: unusual phenotype of mutants in the zinc finger-like domain.
    Masuda T; Planelles V; Krogstad P; Chen IS
    J Virol; 1995 Nov; 69(11):6687-96. PubMed ID: 7474078
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Enhanced and coordinated processing of synapsed viral DNA ends by retroviral integrases in vitro.
    Kukolj G; Skalka AM
    Genes Dev; 1995 Oct; 9(20):2556-67. PubMed ID: 7590235
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The role of manganese in promoting multimerization and assembly of human immunodeficiency virus type 1 integrase as a catalytically active complex on immobilized long terminal repeat substrates.
    Wolfe AL; Felock PJ; Hastings JC; Blau CU; Hazuda DJ
    J Virol; 1996 Mar; 70(3):1424-32. PubMed ID: 8627659
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Human immunodeficiency virus type 1 integrase: effects of mutations on viral ability to integrate, direct viral gene expression from unintegrated viral DNA templates, and sustain viral propagation in primary cells.
    Wiskerchen M; Muesing MA
    J Virol; 1995 Jan; 69(1):376-86. PubMed ID: 7983732
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Changes in the mechanism of DNA integration in vitro induced by base substitutions in the HIV-1 U5 and U3 terminal sequences.
    Brin E; Leis J
    J Biol Chem; 2002 Mar; 277(13):10938-48. PubMed ID: 11788585
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Human immunodeficiency virus type 1 integration protein: DNA sequence requirements for cleaving and joining reactions.
    Sherman PA; Dickson ML; Fyfe JA
    J Virol; 1992 Jun; 66(6):3593-601. PubMed ID: 1374809
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Human immunodeficiency virus integration protein expressed in Escherichia coli possesses selective DNA cleaving activity.
    Sherman PA; Fyfe JA
    Proc Natl Acad Sci U S A; 1990 Jul; 87(13):5119-23. PubMed ID: 2164223
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Mapping domains of retroviral integrase responsible for viral DNA specificity and target site selection by analysis of chimeras between human immunodeficiency virus type 1 and visna virus integrases.
    Katzman M; Sudol M
    J Virol; 1995 Sep; 69(9):5687-96. PubMed ID: 7637015
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substrate features important for recognition and catalysis by human immunodeficiency virus type 1 integrase identified by using novel DNA substrates.
    Chow SA; Brown PO
    J Virol; 1994 Jun; 68(6):3896-907. PubMed ID: 8189526
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Activity of recombinant HIV-1 integrase on mini-HIV DNA.
    Cherepanov P; Surratt D; Toelen J; Pluymers W; Griffith J; De Clercq E; Debyser Z
    Nucleic Acids Res; 1999 May; 27(10):2202-10. PubMed ID: 10219094
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Inhibition of the integrase of human immunodeficiency virus (HIV) type 1 by anti-HIV plant proteins MAP30 and GAP31.
    Lee-Huang S; Huang PL; Huang PL; Bourinbaiar AS; Chen HC; Kung HF
    Proc Natl Acad Sci U S A; 1995 Sep; 92(19):8818-22. PubMed ID: 7568024
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Base-pair substitutions in avian sarcoma virus U5 and U3 long terminal repeat sequences alter the process of DNA integration in vitro.
    Hindmarsh P; Johnson M; Reeves R; Leis J
    J Virol; 2001 Feb; 75(3):1132-41. PubMed ID: 11152486
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Efficient magnesium-dependent human immunodeficiency virus type 1 integrase activity.
    Engelman A; Craigie R
    J Virol; 1995 Sep; 69(9):5908-11. PubMed ID: 7637039
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.