These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 7666827)

  • 41. On the possible role of iron-induced free radical peroxidation in neural degeneration in Alzheimer's disease.
    Richardson JS; Subbarao KV; Ang LC
    Ann N Y Acad Sci; 1992 May; 648():326-7. PubMed ID: 1322084
    [No Abstract]   [Full Text] [Related]  

  • 42. Role of free radicals in the neurodegenerative diseases: therapeutic implications for antioxidant treatment.
    Halliwell B
    Drugs Aging; 2001; 18(9):685-716. PubMed ID: 11599635
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Iron regulation in the brain at the cell and molecular level.
    Connor JR
    Adv Exp Med Biol; 1994; 356():229-38. PubMed ID: 7887227
    [No Abstract]   [Full Text] [Related]  

  • 44. Mysteries of the transferrin-transferrin receptor 1 interaction uncovered.
    Richardson DR
    Cell; 2004 Feb; 116(4):483-5. PubMed ID: 14980214
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Cellular management of iron in the brain.
    Connor JR; Menzies SL
    J Neurol Sci; 1995 Dec; 134 Suppl():33-44. PubMed ID: 8847543
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Iron uptake and transferrin endocytosis in undifferentiated and differentiated erythroid cells.
    Hradilek A; Neuwirt J
    Biomed Biochim Acta; 1987; 46(2-3):S141-5. PubMed ID: 3473987
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Gallium-67 as a potential marker for aluminium transport in rat brain: implications for Alzheimer's disease.
    Pullen RG; Candy JM; Morris CM; Taylor G; Keith AB; Edwardson JA
    J Neurochem; 1990 Jul; 55(1):251-9. PubMed ID: 2355220
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Mitochondria superoxide dismutase mimetic inhibits peroxide-induced oxidative damage and apoptosis: role of mitochondrial superoxide.
    Dhanasekaran A; Kotamraju S; Karunakaran C; Kalivendi SV; Thomas S; Joseph J; Kalyanaraman B
    Free Radic Biol Med; 2005 Sep; 39(5):567-83. PubMed ID: 16085176
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Transferrin types, iron-binding capacity and body iron stores.
    Sikström C; Beckman L; Hallmans G; Asplund K
    Hum Hered; 1993; 43(6):337-41. PubMed ID: 8288264
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genetic and biochemical markers in patients with Alzheimer's disease support a concerted systemic iron homeostasis dysregulation.
    Crespo ÂC; Silva B; Marques L; Marcelino E; Maruta C; Costa S; Timóteo A; Vilares A; Couto FS; Faustino P; Correia AP; Verdelho A; Porto G; Guerreiro M; Herrero A; Costa C; de Mendonça A; Costa L; Martins M
    Neurobiol Aging; 2014 Apr; 35(4):777-85. PubMed ID: 24199959
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Transport of Non-Transferrin Bound Iron to the Brain: Implications for Alzheimer's Disease.
    Tripathi AK; Karmakar S; Asthana A; Ashok A; Desai V; Baksi S; Singh N
    J Alzheimers Dis; 2017; 58(4):1109-1119. PubMed ID: 28550259
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Human MRCKalpha is regulated by cellular iron levels and interferes with transferrin iron uptake.
    Cmejla R; Ptackova P; Petrak J; Savvulidi F; Cerny J; Sebesta O; Vyoral D
    Biochem Biophys Res Commun; 2010 Apr; 395(2):163-7. PubMed ID: 20188707
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Lipid peroxidation and free radical scavengers in Alzheimer's disease.
    Jeandel C; Nicolas MB; Dubois F; Nabet-Belleville F; Penin F; Cuny G
    Gerontology; 1989; 35(5-6):275-82. PubMed ID: 2630382
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Iron metabolism and Parkinson's disease.
    Hirsch EC; Faucheux BA
    Mov Disord; 1998; 13 Suppl 1():39-45. PubMed ID: 9613717
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Defective gallium-transferrin binding in Alzheimer disease and Down syndrome: possible mechanism for accumulation of aluminium in brain.
    Farrar G; Altmann P; Welch S; Wychrij O; Ghose B; Lejeune J; Corbett J; Prasher V; Blair JA
    Lancet; 1990 Mar; 335(8692):747-50. PubMed ID: 1969510
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Analyses for binding of the transferrin family of proteins to the transferrin receptor 2.
    Kawabata H; Tong X; Kawanami T; Wano Y; Hirose Y; Sugai S; Koeffler HP
    Br J Haematol; 2004 Nov; 127(4):464-73. PubMed ID: 15521925
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The puzzle of Alzheimer's disease (AD).
    Lehmann HD
    Med Hypotheses; 1992 May; 38(1):5-10. PubMed ID: 1614358
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Kinetic studies on the removal of iron and aluminum from recombinant and site-directed mutant N-lobe half transferrins.
    Li Y; Harris WR; Maxwell A; MacGillivray RT; Brown T
    Biochemistry; 1998 Oct; 37(40):14157-66. PubMed ID: 9760252
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Alterations in the interaction between iron regulatory proteins and their iron responsive element in normal and Alzheimer's diseased brains.
    Piñero DJ; Hu J; Connor JR
    Cell Mol Biol (Noisy-le-grand); 2000 Jun; 46(4):761-76. PubMed ID: 10875438
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Effect of aluminium on iron uptake and transferrin-receptor expression by human erythroleukaemia K562 cells.
    McGregor SJ; Naves ML; Oria R; Vass JK; Brock JH
    Biochem J; 1990 Dec; 272(2):377-82. PubMed ID: 2268267
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.