BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

230 related articles for article (PubMed ID: 7667071)

  • 1. Maturational changes in the respiratory rhythm generator of the mouse.
    Paton JF; Richter DW
    Pflugers Arch; 1995 May; 430(1):115-24. PubMed ID: 7667071
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of fast inhibitory synaptic mechanisms in respiratory rhythm generation in the maturing mouse.
    Paton JF; Richter DW
    J Physiol; 1995 Apr; 484 ( Pt 2)(Pt 2):505-21. PubMed ID: 7602541
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The ventral medullary respiratory network of the mature mouse studied in a working heart-brainstem preparation.
    Paton JF
    J Physiol; 1996 Jun; 493 ( Pt 3)(Pt 3):819-31. PubMed ID: 8799902
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Blockade of brain stem gap junctions increases phrenic burst frequency and reduces phrenic burst synchronization in adult rat.
    Solomon IC; Chon KH; Rodriguez MN
    J Neurophysiol; 2003 Jan; 89(1):135-49. PubMed ID: 12522166
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pontine and medullary control of the respiratory activity in the trigeminal and facial nerves of the newborn mouse: an in vitro study.
    Jacquin TD; Sadoc G; Borday V; Champagnat J
    Eur J Neurosci; 1999 Jan; 11(1):213-22. PubMed ID: 9987025
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rhythmic bursting of pre- and post-inspiratory neurones during central apnoea in mature mice.
    Paton JF
    J Physiol; 1997 Aug; 502 ( Pt 3)(Pt 3):623-39. PubMed ID: 9279813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory neural activity responses to chemical stimuli in newborn rats: reversible transition from normal to 'secondary' rhythm during asphyxia and its implication for 'respiratory like' activity of isolated medullary preparation.
    Fukuda Y
    Neurosci Res; 2000 Dec; 38(4):407-17. PubMed ID: 11164567
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Generation and transmission of respiratory oscillations in medullary slices: role of excitatory amino acids.
    Funk GD; Smith JC; Feldman JL
    J Neurophysiol; 1993 Oct; 70(4):1497-515. PubMed ID: 8283211
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanisms of respiratory rhythm generation change profoundly during early life in mice and rats.
    Paton JF; Ramirez JM; Richter DW
    Neurosci Lett; 1994 Mar; 170(1):167-70. PubMed ID: 8041498
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Functionally intact in vitro preparation generating respiratory activity in neonatal and mature mammals.
    Paton JF; Ramirez JM; Richter DW
    Pflugers Arch; 1994 Oct; 428(3-4):250-60. PubMed ID: 7816547
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Uncoupling of rhythmic hypoglossal from phrenic activity in the rat.
    St-John WM; Paton JF; Leiter JC
    Exp Physiol; 2004 Nov; 89(6):727-37. PubMed ID: 15364882
    [TBL] [Abstract][Full Text] [Related]  

  • 12. alpha1-adrenergic receptor-induced slow rhythmicity in nonrespiratory cervical motoneurons of neonatal rat spinal cord.
    Morin D; Bonnot A; Ballion B; Viala D
    Eur J Neurosci; 2000 Aug; 12(8):2950-66. PubMed ID: 10971636
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Postnatal changes in the mammalian respiratory network as revealed by the transverse brainstem slice of mice.
    Ramirez JM; Quellmalz UJ; Richter DW
    J Physiol; 1996 Mar; 491 ( Pt 3)(Pt 3):799-812. PubMed ID: 8815212
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modulation of hypoglossal motoneuron excitability by NK1 receptor activation in neonatal mice in vitro.
    Yasuda K; Robinson DM; Selvaratnam SR; Walsh CW; McMorland AJ; Funk GD
    J Physiol; 2001 Jul; 534(Pt. 2):447-64. PubMed ID: 11454963
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gap junctions and inhibitory synapses modulate inspiratory motoneuron synchronization.
    Bou-Flores C; Berger AJ
    J Neurophysiol; 2001 Apr; 85(4):1543-51. PubMed ID: 11287478
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Hypoglossal premotor neurons with rhythmical inspiratory-related activity in the cat: localization and projection to the phrenic nucleus.
    Ono T; Ishiwata Y; Inaba N; Kuroda T; Nakamura Y
    Exp Brain Res; 1994; 98(1):1-12. PubMed ID: 8013576
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neuronal mechanisms of respiratory rhythm generation: an approach using in vitro preparation.
    Onimaru H; Arata A; Homma I
    Jpn J Physiol; 1997 Oct; 47(5):385-403. PubMed ID: 9504127
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Developmental modulation of mouse hypoglossal nerve inspiratory output in vitro by noradrenergic receptor agonists.
    Selvaratnam SR; Parkis MA; Funk GD
    Brain Res; 1998 Sep; 805(1-2):104-15. PubMed ID: 9733937
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Inspiratory-phase short time scale synchrony in the brainstem slice is generated downstream of the pre-Bötzinger complex.
    Sebe JY; Berger AJ
    Neuroscience; 2008 Jun; 153(4):1390-401. PubMed ID: 18455877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Glycinergic inhibition is essential for co-ordinating cranial and spinal respiratory motor outputs in the neonatal rat.
    Dutschmann M; Paton JF
    J Physiol; 2002 Sep; 543(Pt 2):643-53. PubMed ID: 12205196
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.