BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 7667186)

  • 1. Development of an efficient single-step freeze-drying cycle for protein formulations.
    Chang BS; Fischer NL
    Pharm Res; 1995 Jun; 12(6):831-7. PubMed ID: 7667186
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The nonsteady state modeling of freeze drying: in-process product temperature and moisture content mapping and pharmaceutical product quality applications.
    Pikal MJ; Cardon S; Bhugra C; Jameel F; Rambhatla S; Mascarenhas WJ; Akay HU
    Pharm Dev Technol; 2005; 10(1):17-32. PubMed ID: 15776810
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Impact of fast and conservative freeze-drying on product quality of protein-mannitol-sucrose-glycerol lyophilizates.
    Horn J; Schanda J; Friess W
    Eur J Pharm Biopharm; 2018 Jun; 127():342-354. PubMed ID: 29522899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein purification process engineering. Freeze drying: A practical overview.
    Gatlin LA; Nail SL
    Bioprocess Technol; 1994; 18():317-67. PubMed ID: 7764173
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Aggressive conditions during primary drying as a contemporary approach to optimise freeze-drying cycles of biopharmaceuticals.
    Bjelošević M; Seljak KB; Trstenjak U; Logar M; Brus B; Ahlin Grabnar P
    Eur J Pharm Sci; 2018 Sep; 122():292-302. PubMed ID: 30006178
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Measurement of the kinetics of protein unfolding in viscous systems and implications for protein stability in freeze-drying.
    Tang XC; Pikal MJ
    Pharm Res; 2005 Jul; 22(7):1176-85. PubMed ID: 16028019
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fundamentals of freeze-drying.
    Nail SL; Jiang S; Chongprasert S; Knopp SA
    Pharm Biotechnol; 2002; 14():281-360. PubMed ID: 12189727
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of a mixture DOE for the prediction of formulation critical temperatures during lyophilisation process optimisation.
    Gervasi V; Cullen S; McCoy T; Crean A; Vucen S
    Int J Pharm; 2019 Dec; 572():118807. PubMed ID: 31678526
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Formulation Screening and Freeze-Drying Process Optimization of Ginkgolide B Lyophilized Powder for Injection.
    Liu D; Galvanin F; Yu Y
    AAPS PharmSciTech; 2018 Feb; 19(2):541-550. PubMed ID: 28849380
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Freeze-Drying of L-Arginine/Sucrose-Based Protein Formulations, Part 2: Optimization of Formulation Design and Freeze-Drying Process Conditions for an L-Arginine Chloride-Based Protein Formulation System.
    Stärtzel P; Gieseler H; Gieseler M; Abdul-Fattah AM; Adler M; Mahler HC; Goldbach P
    J Pharm Sci; 2015 Dec; 104(12):4241-4256. PubMed ID: 26422647
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of temperature ramp rate during the primary drying process on the properties of amorphous-based lyophilized cake, Part 2: Successful lyophilization by adopting a fast ramp rate during primary drying in protein formulations.
    Ohori R; Akita T; Yamashita C
    Eur J Pharm Biopharm; 2018 Sep; 130():83-95. PubMed ID: 29913271
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Component crystallization and physical collapse during freeze-drying of L-arginine-citric acid mixtures.
    Yamaki T; Ohdate R; Nakadai E; Yoshihashi Y; Yonemochi E; Terada K; Moriyama H; Izutsu K; Yomota C; Okuda H; Kawanishi T
    Chem Pharm Bull (Tokyo); 2012; 60(9):1176-81. PubMed ID: 22976327
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Optimizing the lyophilization cycle and the consequences of collapse on the pharmaceutical acceptability of Erwinia L-asparaginase.
    Adams GD; Ramsay JR
    J Pharm Sci; 1996 Dec; 85(12):1301-5. PubMed ID: 8961143
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cake shrinkage during freeze drying: a combined experimental and theoretical study.
    Rambhatla S; Obert JP; Luthra S; Bhugra C; Pikal MJ
    Pharm Dev Technol; 2005; 10(1):33-40. PubMed ID: 15776811
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Spatial Variation of Pressure in the Lyophilization Product Chamber Part 2: Experimental Measurements and Implications for Scale-up and Batch Uniformity.
    Sane P; Varma N; Ganguly A; Pikal M; Alexeenko A; Bogner RH
    AAPS PharmSciTech; 2017 Feb; 18(2):369-380. PubMed ID: 26989063
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of primary drying temperature on process efficiency and product performance of lyophilized Ertapenam sodium.
    Vohra ZA; Zode SS; Bansal AK
    Drug Dev Ind Pharm; 2019 Dec; 45(12):1940-1948. PubMed ID: 31625418
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the design of the stopper including dimension, type, and vent area on lyophilization process.
    Mungikar A; Ludzinski M; Kamat M
    PDA J Pharm Sci Technol; 2010; 64(6):507-16. PubMed ID: 21502061
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Investigation of drying stresses on proteins during lyophilization: differentiation between primary and secondary-drying stresses on lactate dehydrogenase using a humidity controlled mini freeze-dryer.
    Luthra S; Obert JP; Kalonia DS; Pikal MJ
    J Pharm Sci; 2007 Jan; 96(1):61-70. PubMed ID: 17031859
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of the sucrose/glycine/water system by differential scanning calorimetry and freeze-drying microscopy.
    Kasraian K; Spitznagel TM; Juneau JA; Yim K
    Pharm Dev Technol; 1998 May; 3(2):233-9. PubMed ID: 9653761
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Investigation of freeze-drying sublimation rates using a freeze-drying microbalance technique.
    Xiang J; Hey JM; Liedtke V; Wang DQ
    Int J Pharm; 2004 Jul; 279(1-2):95-105. PubMed ID: 15234798
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.