BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 7667265)

  • 41. Characterization of the role of cadherin in regulating cell adhesion during sea urchin development.
    Miller JR; McClay DR
    Dev Biol; 1997 Dec; 192(2):323-39. PubMed ID: 9441671
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Identification and characterization of homeobox transcription factor genes in Strongylocentrotus purpuratus, and their expression in embryonic development.
    Howard-Ashby M; Materna SC; Brown CT; Chen L; Cameron RA; Davidson EH
    Dev Biol; 2006 Dec; 300(1):74-89. PubMed ID: 17055477
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cloning and characterization of novel beta integrin subunits from a sea urchin.
    Marsden M; Burke RD
    Dev Biol; 1997 Jan; 181(2):234-45. PubMed ID: 9013933
    [TBL] [Abstract][Full Text] [Related]  

  • 44. rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina.
    Furukawa T; Kozak CA; Cepko CL
    Proc Natl Acad Sci U S A; 1997 Apr; 94(7):3088-93. PubMed ID: 9096350
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Wnt signaling in the early sea urchin embryo.
    Kumburegama S; Wikramanayake AH
    Methods Mol Biol; 2008; 469():187-99. PubMed ID: 19109711
    [TBL] [Abstract][Full Text] [Related]  

  • 46. brachyury Target genes in the early sea urchin embryo isolated by differential macroarray screening.
    Rast JP; Cameron RA; Poustka AJ; Davidson EH
    Dev Biol; 2002 Jun; 246(1):191-208. PubMed ID: 12027442
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Ectoderm gene activation in sea urchin embryos mediated by the CCAAT-binding factor.
    Li X; Bhattacharya C; Dayal S; Maity S; Klein WH
    Differentiation; 2002 May; 70(2-3):109-19. PubMed ID: 12076338
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Divergence of ectodermal and mesodermal gene regulatory network linkages in early development of sea urchins.
    Erkenbrack EM
    Proc Natl Acad Sci U S A; 2016 Nov; 113(46):E7202-E7211. PubMed ID: 27810959
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Identification and characterization of PlAlix, the Alix homologue from the Mediterranean sea urchin Paracentrotus lividus.
    Romancino DP; Anello L; Morici G; d'Azzo A; Bongiovanni A; Di Bernardo M
    Dev Growth Differ; 2013 Feb; 55(2):237-46. PubMed ID: 23302023
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Nuclear beta-catenin-dependent Wnt8 signaling in vegetal cells of the early sea urchin embryo regulates gastrulation and differentiation of endoderm and mesodermal cell lineages.
    Wikramanayake AH; Peterson R; Chen J; Huang L; Bince JM; McClay DR; Klein WH
    Genesis; 2004 Jul; 39(3):194-205. PubMed ID: 15282746
    [TBL] [Abstract][Full Text] [Related]  

  • 51. New early zygotic regulators expressed in endomesoderm of sea urchin embryos discovered by differential array hybridization.
    Ransick A; Rast JP; Minokawa T; Calestani C; Davidson EH
    Dev Biol; 2002 Jun; 246(1):132-47. PubMed ID: 12027439
    [TBL] [Abstract][Full Text] [Related]  

  • 52. EST analysis of gene expression in early cleavage-stage sea urchin embryos.
    Lee YH; Huang GM; Cameron RA; Graham G; Davidson EH; Hood L; Britten RJ
    Development; 1999 Sep; 126(17):3857-67. PubMed ID: 10433914
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The protease degrading sperm histones post-fertilization in sea urchin eggs is a nuclear cathepsin L that is further required for embryo development.
    Morin V; Sanchez-Rubio A; Aze A; Iribarren C; Fayet C; Desdevises Y; Garcia-Huidobro J; Imschenetzky M; Puchi M; Genevière AM
    PLoS One; 2012; 7(11):e46850. PubMed ID: 23144790
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Expression pattern of Brachyury and Not in the sea urchin: comparative implications for the origins of mesoderm in the basal deuterostomes.
    Peterson KJ; Harada Y; Cameron RA; Davidson EH
    Dev Biol; 1999 Mar; 207(2):419-31. PubMed ID: 10068473
    [TBL] [Abstract][Full Text] [Related]  

  • 55. cis-Regulatory control of the initial neurogenic pattern of onecut gene expression in the sea urchin embryo.
    Barsi JC; Davidson EH
    Dev Biol; 2016 Jan; 409(1):310-318. PubMed ID: 26522848
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Characterization of the homeobox-containing gene GH6 identifies novel regions of homeobox gene expression in the developing chick embryo.
    Stadler HS; Solursh M
    Dev Biol; 1994 Jan; 161(1):251-62. PubMed ID: 7904968
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains.
    Hodor PG; Illies MR; Broadley S; Ettensohn CA
    Dev Biol; 2000 Jun; 222(1):181-94. PubMed ID: 10885756
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Expression and function of blimp1/krox, an alternatively transcribed regulatory gene of the sea urchin endomesoderm network.
    Livi CB; Davidson EH
    Dev Biol; 2006 May; 293(2):513-25. PubMed ID: 16581059
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Spatial distribution of collagen type I mRNA in Paracentrotus lividus eggs and embryos.
    Gambino R; Romancino DP; Cervello M; Vizzini A; Isola MG; Virruso L; Di Carlo M
    Biochem Biophys Res Commun; 1997 Sep; 238(2):334-7. PubMed ID: 9299507
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Hox-type and non-Hox homeobox gene sequences in genomic DNA of the sea urchin Holopneustes purpurescens.
    Morris VB; Brammall J; Byrne M; Frommer M
    Gene; 1997 Nov; 201(1-2):107-10. PubMed ID: 9409777
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.