These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 7667881)

  • 1. Protein design: novel metal-binding sites.
    Regan L
    Trends Biochem Sci; 1995 Jul; 20(7):280-5. PubMed ID: 7667881
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The design of metal-binding sites in proteins.
    Regan L
    Annu Rev Biophys Biomol Struct; 1993; 22():257-87. PubMed ID: 8347991
    [No Abstract]   [Full Text] [Related]  

  • 3. Secondary ligands enhance affinity at a designed metal-binding site.
    Marino SF; Regan L
    Chem Biol; 1999 Sep; 6(9):649-55. PubMed ID: 10467132
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Protein metal-binding sites.
    Tainer JA; Roberts VA; Getzoff ED
    Curr Opin Biotechnol; 1992 Aug; 3(4):378-87. PubMed ID: 1368439
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Metal Stabilization of Collagen and de Novo Designed Mimetic Peptides.
    Parmar AS; Xu F; Pike DH; Belure SV; Hasan NF; Drzewiecki KE; Shreiber DI; Nanda V
    Biochemistry; 2015 Aug; 54(32):4987-97. PubMed ID: 26225466
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Incorporating metals into de novo proteins.
    Peacock AF
    Curr Opin Chem Biol; 2013 Dec; 17(6):934-9. PubMed ID: 24183813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Metal binding specificity in carbonic anhydrase is influenced by conserved hydrophobic core residues.
    Hunt JA; Ahmed M; Fierke CA
    Biochemistry; 1999 Jul; 38(28):9054-62. PubMed ID: 10413479
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The challenges of determining metal-protein affinities.
    Xiao Z; Wedd AG
    Nat Prod Rep; 2010 May; 27(5):768-89. PubMed ID: 20379570
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The prediction and characterization of metal binding sites in proteins.
    Gregory DS; Martin AC; Cheetham JC; Rees AR
    Protein Eng; 1993 Jan; 6(1):29-35. PubMed ID: 8433968
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction of a family of Cys2His2 zinc binding sites in the hydrophobic core of thioredoxin by structure-based design.
    Wisz MS; Garrett CZ; Hellinga HW
    Biochemistry; 1998 Jun; 37(23):8269-77. PubMed ID: 9622478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Metal binding properties and secondary structure of the zinc-binding domain of Nup475.
    Worthington MT; Amann BT; Nathans D; Berg JM
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13754-9. PubMed ID: 8943007
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Structural and functional aspects of metal-thiolate centres in metallothionein.
    Weser U
    Experientia Suppl; 1987; 52():219-26. PubMed ID: 2959508
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Engineering metal-binding sites in proteins.
    Lu Y; Valentine JS
    Curr Opin Struct Biol; 1997 Aug; 7(4):495-500. PubMed ID: 9266170
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Spectroscopic and metal-binding properties of DF3: an artificial protein able to accommodate different metal ions.
    Torres Martin de Rosales R; Faiella M; Farquhar E; Que L; Andreozzi C; Pavone V; Maglio O; Nastri F; Lombardi A
    J Biol Inorg Chem; 2010 Jun; 15(5):717-28. PubMed ID: 20225070
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Porphyromonas gingivalis HmuY haemophore binds gallium(iii), zinc(ii), cobalt(iii), manganese(iii), nickel(ii), and copper(ii) protoporphyrin IX but in a manner different to iron(iii) protoporphyrin IX.
    Wójtowicz H; Bielecki M; Wojaczyński J; Olczak M; Smalley JW; Olczak T
    Metallomics; 2013 Apr; 5(4):343-51. PubMed ID: 23392445
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The interaction of catalytic metal ions and ionizing groups in equilibrium studies and in transient intermediates of metal-substituted alcohol dehydrogenases.
    Maret W; Gerber M; Zeppezauer M; Dunn MF
    Prog Clin Biol Res; 1985; 174():181-91. PubMed ID: 3885258
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Unraveling the substrate-metal binding site of ferrochelatase: an X-ray absorption spectroscopic study.
    Ferreira GC; Franco R; Mangravita A; George GN
    Biochemistry; 2002 Apr; 41(15):4809-18. PubMed ID: 11939775
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Supramolecular self-assembly of glutamine synthetase: mutagenesis of a novel intermolecular metal binding site required for dodecamer stacking.
    Dabrowski MJ; Yanchunas J; Villafranca BC; Dietze EC; Schurke P; Atkins WM
    Biochemistry; 1994 Dec; 33(50):14957-64. PubMed ID: 7999751
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Protein interactions with surface-immobilized metal ions: structure-dependent variations in affinity and binding capacity with temperature and urea concentration.
    Hutchens TW; Yip TT
    J Inorg Biochem; 1991 May; 42(2):105-18. PubMed ID: 1856719
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Binary and ternary mixed metal complexes of terminally free peptides containing two different histidyl binding sites.
    Grenács A; Kaluha A; Kállay C; Jószai V; Sanna D; Sóvágó I
    J Inorg Biochem; 2013 Nov; 128():17-25. PubMed ID: 23911567
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.