These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 766834)
1. Alteration of the allosteric properties of aspartate transcarbamoylase by pyridoxylation of the catalytic and regulatory subunits. Blackburn MN; Schachman HK Biochemistry; 1976 Mar; 15(6):1316-23. PubMed ID: 766834 [TBL] [Abstract][Full Text] [Related]
2. Concerted allosteric transition in hybrids of aspartate transcarbamoylase containing different arrangements of active and inactive sites. Gibbons I; Ritchey JM; Schachman HK Biochemistry; 1976 Mar; 15(6):1324-30. PubMed ID: 766835 [TBL] [Abstract][Full Text] [Related]
3. Cooperative interactions in hybrids of aspartate transcarbamylase containing succinylated regulatory polypeptide chains. Nagel GM; Schachman HK Biochemistry; 1975 Jul; 14(14):3195-203. PubMed ID: 1096938 [TBL] [Abstract][Full Text] [Related]
4. Aspartate transcarbamoylase: loss of homotropic but not heterotropic interactions upon modification of the catalytic subunit with a bifunctional reagent. Chan WW; Enns CA Can J Biochem; 1979 Jun; 57(6):798-805. PubMed ID: 383237 [TBL] [Abstract][Full Text] [Related]
5. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase. Wales ME; Madison LL; Glaser SS; Wild JR J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393 [TBL] [Abstract][Full Text] [Related]
6. Heterogeneity of sites in isolated catalytic subunits of aspartate transcarbamoylase. Suter P; Rosenbusch JP Eur J Biochem; 1976 Nov; 70(1):191-6. PubMed ID: 795648 [TBL] [Abstract][Full Text] [Related]
7. Pyridoxal 5'-phosphate, a fluorescent probe in the active site of aspartate transcarbamylase. Kempe TD; Stark GR J Biol Chem; 1975 Sep; 250(17):6861-9. PubMed ID: 239951 [TBL] [Abstract][Full Text] [Related]
8. The allosteric activator ATP induces a substrate-dependent alteration of the quaternary structure of a mutant aspartate transcarbamoylase impaired in active site closure. Baker DP; Fetler L; Vachette P; Kantrowitz ER Protein Sci; 1996 Nov; 5(11):2276-86. PubMed ID: 8931146 [TBL] [Abstract][Full Text] [Related]
9. A spectral probe near the subunit catalytic site of glutamine synthetase from Escherichia coli. Reduced pyridoxal 5'-phosphate.enzyme complexes. Whitley EJ; Ginsburg A J Biol Chem; 1978 Oct; 253(19):7017-25. PubMed ID: 29046 [TBL] [Abstract][Full Text] [Related]
10. Communication between dissimilar subunits in aspartate transcarbamoylase: effect of inhibitor and activator on the conformation of the catalytic polypeptide chains. Hensley P; Schachman HK Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3732-6. PubMed ID: 386346 [TBL] [Abstract][Full Text] [Related]
12. Active-site-directed inactivation of wheat-germ aspartate transcarbamoylase by pyridoxal 5'-phosphate. Cole SC; Yon RJ Biochem J; 1987 Dec; 248(2):403-8. PubMed ID: 3435454 [TBL] [Abstract][Full Text] [Related]
13. Communication between catalytic and regulatory subunits in Ni(II)- and Co(II)-aspartate transcarbamoylase. Ligand-promoted structural alterations at the intersubunit bonding domains. Johnson RS; Schachman HK J Biol Chem; 1983 Mar; 258(6):3528-38. PubMed ID: 6833212 [TBL] [Abstract][Full Text] [Related]
14. Cooperative interactions in aspartate transcarbamoylase. 1. Hybrids composed of native and chemically inactivated catalytic polypeptide chains. Gibbons I; Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4452-6. PubMed ID: 4612521 [TBL] [Abstract][Full Text] [Related]
15. Communication between catalytic subunits in hybrid aspartate transcarbamoylase molecules: effect of ligand binding to active chains on the conformation of unliganded, inactive chains. Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5187-91. PubMed ID: 6933552 [TBL] [Abstract][Full Text] [Related]
16. Effects of replacement of active site residue glutamine 231 on activity and allosteric properties of aspartate transcarbamoylase. Peterson CB; Burman DL; Schachman HK Biochemistry; 1992 Sep; 31(36):8508-15. PubMed ID: 1390636 [TBL] [Abstract][Full Text] [Related]
17. Propagation of conformational changes in Ni(II)-substituted aspartate transcarbamoylase: effect of active-site ligands on the regulatory chains. Johnson RS; Schachman HK Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1995-9. PubMed ID: 6990418 [TBL] [Abstract][Full Text] [Related]
18. Quaternary constraint in hybrid of aspartate transcarbamylase containing wild-type and mutant catalytic subunits. Gibbons I; Flatgaard JE; Schachman HK Proc Natl Acad Sci U S A; 1975 Nov; 72(11):4298-302. PubMed ID: 1105578 [TBL] [Abstract][Full Text] [Related]
19. A single amino acid substitution in the active site of Escherichia coli aspartate transcarbamoylase prevents the allosteric transition. Stieglitz KA; Pastra-Landis SC; Xia J; Tsuruta H; Kantrowitz ER J Mol Biol; 2005 Jun; 349(2):413-23. PubMed ID: 15890205 [TBL] [Abstract][Full Text] [Related]
20. Threonine 82 in the regulatory chain is important for nucleotide affinity and for the allosteric stabilization of Escherichia coli aspartate transcarbamoylase. Williams MK; Kantrowitz ER Biochim Biophys Acta; 1998 Dec; 1429(1):249-58. PubMed ID: 9920401 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]