These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
129 related articles for article (PubMed ID: 766834)
21. A 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase forms a stable complex with the catalytic subunit leading to markedly altered enzyme activity. Markby DW; Zhou BB; Schachman HK Proc Natl Acad Sci U S A; 1991 Dec; 88(23):10568-72. PubMed ID: 1961722 [TBL] [Abstract][Full Text] [Related]
22. Asymmetry of binding and physical assignments of CTP and ATP sites in aspartate transcarbamoylase. Suter P; Rosenbusch JP J Biol Chem; 1977 Nov; 252(22):8136-41. PubMed ID: 334776 [TBL] [Abstract][Full Text] [Related]
23. Aspartate transcarbamoylase molecules lacking one regulatory subunit. Yang YR; Syvanen JM; Nagel GM; Schachman HK Proc Natl Acad Sci U S A; 1974 Mar; 71(3):918-22. PubMed ID: 4595576 [TBL] [Abstract][Full Text] [Related]
24. Ligand-promoted weakening of intersubunit bonding domains in aspartate transcarbamolylase. Subramani S; Bothwell MA; Gibbons I; Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1977 Sep; 74(9):3777-81. PubMed ID: 333446 [TBL] [Abstract][Full Text] [Related]
25. Structure and function of aspartate transcarbamoylase studied using chymotrypsin as a probe. Chan WW; Enns CA Can J Biochem; 1978 Jun; 56(6):654-8. PubMed ID: 352490 [TBL] [Abstract][Full Text] [Related]
26. Weakening of the interface between adjacent catalytic chains promotes domain closure in Escherichia coli aspartate transcarbamoylase. Baker DP; Fetler L; Keiser RT; Vachette P; Kantrowitz ER Protein Sci; 1995 Feb; 4(2):258-67. PubMed ID: 7757014 [TBL] [Abstract][Full Text] [Related]
27. Function of threonine-55 in the carbamoyl phosphate binding site of Escherichia coli aspartate transcarbamoylase. Xu W; Kantrowitz ER Biochemistry; 1989 Dec; 28(26):9937-43. PubMed ID: 2515892 [TBL] [Abstract][Full Text] [Related]
29. Site-directed alterations to the geometry of the aspartate transcarbamoylase zinc domain: selective alteration to regulation by heterotropic ligands, isoelectric point, and stability in urea. Strang CJ; Wales ME; Brown DM; Wild JR Biochemistry; 1993 Apr; 32(16):4156-67. PubMed ID: 8476846 [TBL] [Abstract][Full Text] [Related]
30. Negative complementation in aspartate transcarbamylase. Analysis of hybrid enzyme molecules containing different arrangements of polypeptide chains from wild-type and inactive mutant catalytic subunits. Eisenstein E; Han MS; Woo TS; Ritchey JM; Gibbons I; Yang YR; Schachman HK J Biol Chem; 1992 Nov; 267(31):22148-55. PubMed ID: 1429567 [TBL] [Abstract][Full Text] [Related]
31. Topology of binding sites for carbamyl phosphate in aspartate transcarbamylase from Escherichia coli. The use of pyridoxal phosphate as covalent probe. Suter P; Rosenbusch JP Eur J Biochem; 1975 May; 54(1):293-9. PubMed ID: 1097249 [TBL] [Abstract][Full Text] [Related]
32. From feedback inhibition to allostery: the enduring example of aspartate transcarbamoylase. Gerhart J FEBS J; 2014 Jan; 281(2):612-20. PubMed ID: 23953008 [TBL] [Abstract][Full Text] [Related]
33. Glu-50 in the catalytic chain of Escherichia coli aspartate transcarbamoylase plays a crucial role in the stability of the R quaternary structure. Tauc P; Keiser RT; Kantrowitz ER; Vachette P Protein Sci; 1994 Nov; 3(11):1998-2004. PubMed ID: 7703847 [TBL] [Abstract][Full Text] [Related]
34. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase. Robey EA; Schachman HK Proc Natl Acad Sci U S A; 1985 Jan; 82(2):361-5. PubMed ID: 3881763 [TBL] [Abstract][Full Text] [Related]
35. Biosynthesis of bacterial glycogen. Incorporation of pyridoxal phosphate into the allosteric activator site and an ADP-glucose-protected pyridoxal phosphate binding site of Escherichia coli B ADP-glucose synthase. Parsons TF; Preiss J J Biol Chem; 1978 Sep; 253(17):6197-202. PubMed ID: 355250 [TBL] [Abstract][Full Text] [Related]
36. Peptide-protein interaction markedly alters the functional properties of the catalytic subunit of aspartate transcarbamoylase. Zhou BB; Schachman HK Protein Sci; 1993 Jan; 2(1):103-12. PubMed ID: 8443583 [TBL] [Abstract][Full Text] [Related]
37. Importance of a conserved residue, aspartate-162, for the function of Escherichia coli aspartate transcarbamoylase. Newton CJ; Stevens RC; Kantrowitz ER Biochemistry; 1992 Mar; 31(11):3026-32. PubMed ID: 1550826 [TBL] [Abstract][Full Text] [Related]
38. Differential scanning calorimetry of asparate transcarbamoylase and its isolate subunits. Vickers LP; Donovan JW; Schachman HK J Biol Chem; 1978 Dec; 253(23):8493-8. PubMed ID: 361743 [TBL] [Abstract][Full Text] [Related]
39. T-state inhibitors of E. coli aspartate transcarbamoylase that prevent the allosteric transition. Heng S; Stieglitz KA; Eldo J; Xia J; Cardia JP; Kantrowitz ER Biochemistry; 2006 Aug; 45(33):10062-71. PubMed ID: 16906764 [TBL] [Abstract][Full Text] [Related]
40. Role of allosteric: zinc interdomain region of the regulatory subunit in the allosteric regulation of aspartate transcarbamoylase from Escherichia coli. Rastogi VK; Swanson R; Hartberg YM; Wales ME; Wild JR Arch Biochem Biophys; 1998 Jun; 354(2):215-24. PubMed ID: 9637729 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]