These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 766835)
1. Concerted allosteric transition in hybrids of aspartate transcarbamoylase containing different arrangements of active and inactive sites. Gibbons I; Ritchey JM; Schachman HK Biochemistry; 1976 Mar; 15(6):1324-30. PubMed ID: 766835 [TBL] [Abstract][Full Text] [Related]
2. Alteration of the allosteric properties of aspartate transcarbamoylase by pyridoxylation of the catalytic and regulatory subunits. Blackburn MN; Schachman HK Biochemistry; 1976 Mar; 15(6):1316-23. PubMed ID: 766834 [TBL] [Abstract][Full Text] [Related]
3. Cooperative interactions in aspartate transcarbamoylase. 1. Hybrids composed of native and chemically inactivated catalytic polypeptide chains. Gibbons I; Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1974 Nov; 71(11):4452-6. PubMed ID: 4612521 [TBL] [Abstract][Full Text] [Related]
4. Divergent allosteric patterns verify the regulatory paradigm for aspartate transcarbamylase. Wales ME; Madison LL; Glaser SS; Wild JR J Mol Biol; 1999 Dec; 294(5):1387-400. PubMed ID: 10600393 [TBL] [Abstract][Full Text] [Related]
5. Propagation of conformational changes in Ni(II)-substituted aspartate transcarbamoylase: effect of active-site ligands on the regulatory chains. Johnson RS; Schachman HK Proc Natl Acad Sci U S A; 1980 Apr; 77(4):1995-9. PubMed ID: 6990418 [TBL] [Abstract][Full Text] [Related]
6. Cooperative interactions in hybrids of aspartate transcarbamylase containing succinylated regulatory polypeptide chains. Nagel GM; Schachman HK Biochemistry; 1975 Jul; 14(14):3195-203. PubMed ID: 1096938 [TBL] [Abstract][Full Text] [Related]
7. Communication between catalytic subunits in hybrid aspartate transcarbamoylase molecules: effect of ligand binding to active chains on the conformation of unliganded, inactive chains. Yang YR; Schachman HK Proc Natl Acad Sci U S A; 1980 Sep; 77(9):5187-91. PubMed ID: 6933552 [TBL] [Abstract][Full Text] [Related]
8. Negative complementation in aspartate transcarbamylase. Analysis of hybrid enzyme molecules containing different arrangements of polypeptide chains from wild-type and inactive mutant catalytic subunits. Eisenstein E; Han MS; Woo TS; Ritchey JM; Gibbons I; Yang YR; Schachman HK J Biol Chem; 1992 Nov; 267(31):22148-55. PubMed ID: 1429567 [TBL] [Abstract][Full Text] [Related]
9. Communication between dissimilar subunits in aspartate transcarbamoylase: effect of inhibitor and activator on the conformation of the catalytic polypeptide chains. Hensley P; Schachman HK Proc Natl Acad Sci U S A; 1979 Aug; 76(8):3732-6. PubMed ID: 386346 [TBL] [Abstract][Full Text] [Related]
10. Effects of replacement of active site residue glutamine 231 on activity and allosteric properties of aspartate transcarbamoylase. Peterson CB; Burman DL; Schachman HK Biochemistry; 1992 Sep; 31(36):8508-15. PubMed ID: 1390636 [TBL] [Abstract][Full Text] [Related]
11. Analysis of the ligand-promoted global conformational change in aspartate transcarbamoylase. Evidence for a two-state transition from boundary spreading in sedimentation velocity experiments. Werner WE; Schachman HK J Mol Biol; 1989 Mar; 206(1):221-30. PubMed ID: 2649684 [TBL] [Abstract][Full Text] [Related]
13. The contribution of individual interchain interactions to the stabilization of the T and R states of Escherichia coli aspartate transcarbamoylase. Sakash JB; Kantrowitz ER J Biol Chem; 2000 Sep; 275(37):28701-7. PubMed ID: 10875936 [TBL] [Abstract][Full Text] [Related]
14. On conformational changes in the regulatory enzyme aspartate transcarbamoylase. Cohen RE; Foote J; Schachman HK Curr Top Cell Regul; 1985; 26():177-90. PubMed ID: 3907993 [TBL] [Abstract][Full Text] [Related]
15. Communication between polypeptide chains in aspartate transcarbamoylase. Conformational changes at the active sites of unliganded chains resulting from ligand binding to other chains. Lahue RS; Schachman HK J Biol Chem; 1986 Mar; 261(7):3079-84. PubMed ID: 3512547 [TBL] [Abstract][Full Text] [Related]
16. Comparison of active mutants and wild-type aspartate transcarbamoylase of Escherichia coli. Vickers LP; Compton JG; Wall KA; Flatgaard JE; Schachman HK J Biol Chem; 1984 Sep; 259(17):11027-35. PubMed ID: 6381492 [TBL] [Abstract][Full Text] [Related]
17. The allosteric activator ATP induces a substrate-dependent alteration of the quaternary structure of a mutant aspartate transcarbamoylase impaired in active site closure. Baker DP; Fetler L; Vachette P; Kantrowitz ER Protein Sci; 1996 Nov; 5(11):2276-86. PubMed ID: 8931146 [TBL] [Abstract][Full Text] [Related]
18. Direct structural evidence for a concerted allosteric transition in Escherichia coli aspartate transcarbamoylase. Macol CP; Tsuruta H; Stec B; Kantrowitz ER Nat Struct Biol; 2001 May; 8(5):423-6. PubMed ID: 11323717 [TBL] [Abstract][Full Text] [Related]
19. Aspartate transcarbamoylase: loss of homotropic but not heterotropic interactions upon modification of the catalytic subunit with a bifunctional reagent. Chan WW; Enns CA Can J Biochem; 1979 Jun; 57(6):798-805. PubMed ID: 383237 [TBL] [Abstract][Full Text] [Related]
20. Regeneration of active enzyme by formation of hybrids from inactive derivatives: implications for active sites shared between polypeptide chains of aspartate transcarbamoylase. Robey EA; Schachman HK Proc Natl Acad Sci U S A; 1985 Jan; 82(2):361-5. PubMed ID: 3881763 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]