BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

37 related articles for article (PubMed ID: 7668604)

  • 1. Influence of inner ear impedance on middle ear sound transfer functions.
    Zhai S; Bornitz M; Eßinger TM; Chen Z; Neudert M
    Heliyon; 2024 Mar; 10(6):e27758. PubMed ID: 38524600
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Spatial sensitivity distribution assessment and Monte Carlo simulations for needle-based bioimpedance imaging during venipuncture using the finite element method.
    Atmaca Ö; Liu J; Ly TJ; Bajraktari F; Pott PP
    Int J Numer Method Biomed Eng; 2024 May; ():e3831. PubMed ID: 38690649
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Virtual Rhesus Labyrinth Model Predicts Responses to Electrical Stimulation Delivered by a Vestibular Prosthesis.
    Hedjoudje A; Hayden R; Dai C; Ahn J; Rahman M; Risi F; Zhang J; Mori S; Della Santina CC
    J Assoc Res Otolaryngol; 2019 Aug; 20(4):313-339. PubMed ID: 31165284
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Changing stimulation patterns can change the broadness of contralateral masking functions for bilateral cochlear implant users.
    Lee DH; Aronoff JM
    Hear Res; 2018 Jun; 363():55-61. PubMed ID: 29548706
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Loudness and pitch perception using Dynamically Compensated Virtual Channels.
    Nogueira W; Litvak LM; Landsberger DM; Büchner A
    Hear Res; 2017 Feb; 344():223-234. PubMed ID: 27939418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improving virtual channel discrimination in a multi-channel context.
    Srinivasan AG; Shannon RV; Landsberger DM
    Hear Res; 2012 Apr; 286(1-2):19-29. PubMed ID: 22616092
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Reducing current spread using current focusing in cochlear implant users.
    Landsberger DM; Padilla M; Srinivasan AG
    Hear Res; 2012 Feb; 284(1-2):16-24. PubMed ID: 22230370
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Virtual labyrinth model of vestibular afferent excitation via implanted electrodes: validation and application to design of a multichannel vestibular prosthesis.
    Hayden R; Sawyer S; Frey E; Mori S; Migliaccio AA; Della Santina CC
    Exp Brain Res; 2011 May; 210(3-4):623-40. PubMed ID: 21380738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Current focusing sharpens local peaks of excitation in cochlear implant stimulation.
    Srinivasan AG; Landsberger DM; Shannon RV
    Hear Res; 2010 Dec; 270(1-2):89-100. PubMed ID: 20850513
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Identifying cochlear implant channels with poor electrode-neuron interface: partial tripolar, single-channel thresholds and psychophysical tuning curves.
    Bierer JA; Faulkner KF
    Ear Hear; 2010 Apr; 31(2):247-58. PubMed ID: 20090533
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Virtual channel discrimination is improved by current focusing in cochlear implant recipients.
    Landsberger DM; Srinivasan AG
    Hear Res; 2009 Aug; 254(1-2):34-41. PubMed ID: 19383534
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Simulating the effects of spread of electric excitation on musical tuning and melody identification with a cochlear implant.
    Spahr AJ; Litvak LM; Dorman MF; Bohanan AR; Mishra LN
    J Speech Lang Hear Res; 2008 Dec; 51(6):1599-606. PubMed ID: 18664681
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Simulating the effect of spread of excitation in cochlear implants.
    Bingabr M; Espinoza-Varas B; Loizou PC
    Hear Res; 2008 Jul; 241(1-2):73-9. PubMed ID: 18556160
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Psychophysical assessment of stimulation sites in auditory prosthesis electrode arrays.
    Pfingst BE; Burkholder-Juhasz RA; Zwolan TA; Xu L
    Hear Res; 2008 Aug; 242(1-2):172-83. PubMed ID: 18178350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cochlear implant electrode configuration effects on activation threshold and tonotopic selectivity.
    Snyder RL; Middlebrooks JC; Bonham BH
    Hear Res; 2008 Jan; 235(1-2):23-38. PubMed ID: 18037252
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electromotile hearing: acoustic tones mask psychophysical response to high-frequency electrical stimulation of intact guinea pig cochleae.
    Le Prell CG; Kawamoto K; Raphael Y; Dolan DF
    J Acoust Soc Am; 2006 Dec; 120(6):3889-900. PubMed ID: 17225416
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cortical responses to cochlear implant stimulation: channel interactions.
    Bierer JA; Middlebrooks JC
    J Assoc Res Otolaryngol; 2004 Mar; 5(1):32-48. PubMed ID: 14564662
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of electrical current configuration on potential fields in the electrically stimulated cochlea: field models and measurements.
    Spelman FA; Pfingst BE; Clopton BM; Jolly CN; Rodenhiser KL
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():131-6. PubMed ID: 7668604
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tissue impedance and current flow in the implanted ear. Implications for the cochlear prosthesis.
    Spelman FA; Clopton BM; Pfingst BE
    Ann Otol Rhinol Laryngol Suppl; 1982; 98():3-8. PubMed ID: 6814331
    [TBL] [Abstract][Full Text] [Related]  

  • 20.
    ; ; . PubMed ID:
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 2.