These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7668608)

  • 1. Manikin and cochlear implant patient test results with a portable adaptive beamforming processor to suppress the effects of noise.
    van Hoesel RJ; Clark GM
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():144-6. PubMed ID: 7668608
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Evaluation of a portable two-microphone adaptive beamforming speech processor with cochlear implant patients.
    van Hoesel RJ; Clark GM
    J Acoust Soc Am; 1995 Apr; 97(4):2498-503. PubMed ID: 7714267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Speech understanding in background noise with the two-microphone adaptive beamformer BEAM in the Nucleus Freedom Cochlear Implant System.
    Spriet A; Van Deun L; Eftaxiadis K; Laneau J; Moonen M; van Dijk B; van Wieringen A; Wouters J
    Ear Hear; 2007 Feb; 28(1):62-72. PubMed ID: 17204899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Evaluation of the benefit for cochlear implantees of two assistive directional microphone systems in an artificial diffuse noise situation.
    van der Beek FB; Soede W; Frijns JH
    Ear Hear; 2007 Feb; 28(1):99-110. PubMed ID: 17204902
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The benefits of remote microphone technology for adults with cochlear implants.
    Fitzpatrick EM; Séguin C; Schramm DR; Armstrong S; Chénier J
    Ear Hear; 2009 Oct; 30(5):590-9. PubMed ID: 19561509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An investigation of input level range for the nucleus 24 cochlear implant system: speech perception performance, program preference, and loudness comfort ratings.
    James CJ; Skinner MW; Martin LF; Holden LK; Galvin KL; Holden TA; Whitford L
    Ear Hear; 2003 Apr; 24(2):157-74. PubMed ID: 12677112
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and assessment of two fixed-array microphones for use with hearing aids.
    Bilsen FA; Soede W; Berkhout AJ
    J Rehabil Res Dev; 1993; 30(1):73-81. PubMed ID: 8263830
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 1-year postactivation results for sequentially implanted bilateral cochlear implant users.
    Wolfe J; Baker S; Caraway T; Kasulis H; Mears A; Smith J; Swim L; Wood M
    Otol Neurotol; 2007 Aug; 28(5):589-96. PubMed ID: 17667768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multimicrophone adaptive beamforming for interference reduction in hearing aids.
    Peterson PM; Durlach NI; Rabinowitz WM; Zurek PM
    J Rehabil Res Dev; 1987; 24(4):103-10. PubMed ID: 3430369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fixed and adaptive beamforming improves speech perception in noise in cochlear implant recipients equipped with the MED-EL SONNET audio processor.
    Honeder C; Liepins R; Arnoldner C; Šinkovec H; Kaider A; Vyskocil E; Riss D
    PLoS One; 2018; 13(1):e0190718. PubMed ID: 29304186
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Performance of subjects fit with the Advanced Bionics CII and Nucleus 3G cochlear implant devices.
    Spahr AJ; Dorman MF
    Arch Otolaryngol Head Neck Surg; 2004 May; 130(5):624-8. PubMed ID: 15148187
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Use of a sigmoidal-shaped function for noise attenuation in cochlear implants.
    Hu Y; Loizou PC; Li N; Kasturi K
    J Acoust Soc Am; 2007 Oct; 122(4):EL128-34. PubMed ID: 17902741
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Directional hearing aid based on array technology.
    Soede W; Bilsen FA; Berkhout AJ; Verschuure J
    Scand Audiol Suppl; 1993; 38():20-7. PubMed ID: 8153561
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Clinical evaluation of higher stimulation rates in the nucleus research platform 8 system.
    Plant K; Holden L; Skinner M; Arcaroli J; Whitford L; Law MA; Nel E
    Ear Hear; 2007 Jun; 28(3):381-93. PubMed ID: 17485987
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Noise reduction technologies implemented in head-worn preprocessors for improving cochlear implant performance in reverberant noise fields.
    Chung K; Nelson L; Teske M
    Hear Res; 2012 Sep; 291(1-2):41-51. PubMed ID: 22750449
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Using hearing aid adaptive directional microphones to enhance cochlear implant performance.
    Chung K; Zeng FG
    Hear Res; 2009 Apr; 250(1-2):27-37. PubMed ID: 19450437
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Impact of Microphone Configuration on Speech Perception of Cochlear Implant Users in Traffic Noise.
    Weissgerber T; Bandeira M; Brendel M; Stöver T; Baumann U
    Otol Neurotol; 2019 Mar; 40(3):e198-e205. PubMed ID: 30741896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Use of S-shaped input-output functions for noise suppression in cochlear implants.
    Kasturi K; Loizou PC
    Ear Hear; 2007 Jun; 28(3):402-11. PubMed ID: 17485989
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Robustness of an adaptive beamforming method for hearing aids.
    Peterson PM; Wei SM; Rabinowitz WM; Zurek PM
    Acta Otolaryngol Suppl; 1990; 469():85-90. PubMed ID: 2356741
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Results of speech processor upgrade in a population of Veterans Affairs cochlear implant recipients.
    Cohen NL; Waltzman SB; Roland JT; Bromberg B; Cambron N; Gibbs L; Parkinson W; Snead C
    Am J Otol; 1997 Jul; 18(4):462-5. PubMed ID: 9233486
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.