These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

42 related articles for article (PubMed ID: 7668711)

  • 1. First results on patient experiments with CINSTIM: the Southampton Cochlear Implant-Neural Network stimulation framework.
    Leisenberg M; Southgate J
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():370-2. PubMed ID: 7668711
    [No Abstract]   [Full Text] [Related]  

  • 2. CINSTIM: the Southampton Cochlear Implant-Neural Network Simulation and Stimulation framework: implementation advances of a new, neural net-based speech-processing concept.
    Leisenberg M; Downes M
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():375-7. PubMed ID: 7668713
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A neural network model for optimizing vowel recognition by cochlear implant listeners.
    Chang CH; Anderson GT; Loizou PC
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):42-8. PubMed ID: 11482362
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Analysis and synthesis of speech regarding cochlear implant.
    Carrat R
    Acta Otolaryngol Suppl; 1984; 411():85-94. PubMed ID: 6596855
    [No Abstract]   [Full Text] [Related]  

  • 5. Recognition of Dutch phonemes by cochlear implant users with the Multipeak strategy.
    van Olphen AF; van Dijk JE; Langereis MC; Smoorenburg GF
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():365-8. PubMed ID: 7668709
    [No Abstract]   [Full Text] [Related]  

  • 6. Artificial neural network-based channel selection and loudness mapping.
    Wang RJ; Jabri MA
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():381-4. PubMed ID: 7668715
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of bionic wavelet transform to speech signal processing in cochlear implants using neural network simulations.
    Yao J; Zhang YT
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1299-309. PubMed ID: 12450360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Auditory cortical activation and speech perception in cochlear implant users: effects of implant experience and duration of deafness.
    Green KM; Julyan PJ; Hastings DL; Ramsden RT
    Hear Res; 2005 Jul; 205(1-2):184-92. PubMed ID: 15953527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The benefits of remote microphone technology for adults with cochlear implants.
    Fitzpatrick EM; Séguin C; Schramm DR; Armstrong S; Chénier J
    Ear Hear; 2009 Oct; 30(5):590-9. PubMed ID: 19561509
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Fitting the Nucleus-22 cochlear implant for Spanish speakers.
    Aronson L; Arauz SL
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():75-6. PubMed ID: 7668763
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Production and perception of speech intonation in pediatric cochlear implant recipients and individuals with normal hearing.
    Peng SC; Tomblin JB; Turner CW
    Ear Hear; 2008 Jun; 29(3):336-51. PubMed ID: 18344873
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Perceptual benefit and functional outcomes for children using sequential bilateral cochlear implants.
    Galvin KL; Mok M; Dowell RC
    Ear Hear; 2007 Aug; 28(4):470-82. PubMed ID: 17609610
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Performance of prelingually or postlingually deafened adults who were using a single or multichannel cochlear implant.
    Hinderink JB; Snik AF; Mens LH; Brokx JP; van den Broek P
    Ear Nose Throat J; 1994 Mar; 73(3):180-3. PubMed ID: 8205980
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Variables affecting implant performance in children.
    Miyamoto RT; Osberger MJ; Todd SL; Robbins AM; Stroer BS; Zimmerman-Phillips S; Carney AE
    Laryngoscope; 1994 Sep; 104(9):1120-4. PubMed ID: 8072359
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Rehabilitation and assessment of aural-oral speech development in children with cochlear implants].
    Lantsov AA; Koroleva IV; Pudov VI
    Vestn Otorinolaringol; 2000; (3):6-12. PubMed ID: 10846480
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Perception and confusion of speech sounds by adults with a cochlear implant.
    Rødvik AK
    Clin Linguist Phon; 2008; 22(4-5):371-8. PubMed ID: 18415737
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Comparison of speech processing strategies used in the Clarion implant processor.
    Loizou PC; Stickney G; Mishra L; Assmann P
    Ear Hear; 2003 Feb; 24(1):12-9. PubMed ID: 12598809
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A novel speech-processing strategy incorporating tonal information for cochlear implants.
    Lan N; Nie KB; Gao SK; Zeng FG
    IEEE Trans Biomed Eng; 2004 May; 51(5):752-60. PubMed ID: 15132501
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Factors associated with development of speech perception skills in children implanted by age five.
    Geers A; Brenner C; Davidson L
    Ear Hear; 2003 Feb; 24(1 Suppl):24S-35S. PubMed ID: 12612478
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of processing strategies on cochlear implant performance.
    Cohen NL; Waltzman SB
    Ann Otol Rhinol Laryngol Suppl; 1995 Apr; 165():9-14. PubMed ID: 7717634
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.