These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

74 related articles for article (PubMed ID: 7668715)

  • 1. Artificial neural network-based channel selection and loudness mapping.
    Wang RJ; Jabri MA
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():381-4. PubMed ID: 7668715
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A neural network model for optimizing vowel recognition by cochlear implant listeners.
    Chang CH; Anderson GT; Loizou PC
    IEEE Trans Neural Syst Rehabil Eng; 2001 Mar; 9(1):42-8. PubMed ID: 11482362
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An investigation of input level range for the nucleus 24 cochlear implant system: speech perception performance, program preference, and loudness comfort ratings.
    James CJ; Skinner MW; Martin LF; Holden LK; Galvin KL; Holden TA; Whitford L
    Ear Hear; 2003 Apr; 24(2):157-74. PubMed ID: 12677112
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Auditory capabilities of patients implanted with the House single-channel cochlear implant.
    Brimacombe JA; Edgerton BJ; Doyle KJ; Erratt JD; Danhauer JL
    Acta Otolaryngol Suppl; 1984; 411():204-16. PubMed ID: 6596844
    [No Abstract]   [Full Text] [Related]  

  • 5. A novel speech-processing strategy incorporating tonal information for cochlear implants.
    Lan N; Nie KB; Gao SK; Zeng FG
    IEEE Trans Biomed Eng; 2004 May; 51(5):752-60. PubMed ID: 15132501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of stimulus level on the speech perception abilities of children using cochlear implants or digital hearing aids.
    Davidson LS
    Ear Hear; 2006 Oct; 27(5):493-507. PubMed ID: 16957500
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The application of bionic wavelet transform to speech signal processing in cochlear implants using neural network simulations.
    Yao J; Zhang YT
    IEEE Trans Biomed Eng; 2002 Nov; 49(11):1299-309. PubMed ID: 12450360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Relation between neural response telemetry thresholds, T- and C-levels, and loudness judgments in 12 adult nucleus 24 cochlear implant recipients.
    Potts LG; Skinner MW; Gotter BD; Strube MJ; Brenner CA
    Ear Hear; 2007 Aug; 28(4):495-511. PubMed ID: 17609612
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CINSTIM: the Southampton Cochlear Implant-Neural Network Simulation and Stimulation framework: implementation advances of a new, neural net-based speech-processing concept.
    Leisenberg M; Downes M
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():375-7. PubMed ID: 7668713
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Factors associated with development of speech perception skills in children implanted by age five.
    Geers A; Brenner C; Davidson L
    Ear Hear; 2003 Feb; 24(1 Suppl):24S-35S. PubMed ID: 12612478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Results from a psychoacoustic model-based strategy for the nucleus-24 and freedom cochlear implants.
    Büchner A; Nogueira W; Edler B; Battmer RD; Lenarz T
    Otol Neurotol; 2008 Feb; 29(2):189-92. PubMed ID: 18223445
    [TBL] [Abstract][Full Text] [Related]  

  • 12. First results on patient experiments with CINSTIM: the Southampton Cochlear Implant-Neural Network stimulation framework.
    Leisenberg M; Southgate J
    Ann Otol Rhinol Laryngol Suppl; 1995 Sep; 166():370-2. PubMed ID: 7668711
    [No Abstract]   [Full Text] [Related]  

  • 13. Spectral modulation detection and vowel and consonant identifications in cochlear implant listeners.
    Saoji AA; Litvak L; Spahr AJ; Eddins DA
    J Acoust Soc Am; 2009 Sep; 126(3):955-8. PubMed ID: 19739707
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development of a software tool using deterministic logic for the optimization of cochlear implant processor programming.
    Govaerts PJ; Vaerenberg B; De Ceulaer G; Daemers K; De Beukelaer C; Schauwers K
    Otol Neurotol; 2010 Aug; 31(6):908-18. PubMed ID: 20418791
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Loudness growth in cochlear implants: effect of stimulation rate and electrode configuration.
    Fu QJ
    Hear Res; 2005 Apr; 202(1-2):55-62. PubMed ID: 15811699
    [TBL] [Abstract][Full Text] [Related]  

  • 16. What matched comparisons can and cannot tell us: the case of cochlear implants.
    Sagi E; Fitzgerald MB; Svirsky MA
    Ear Hear; 2007 Aug; 28(4):571-9. PubMed ID: 17609617
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bilateral cochlear implants controlled by a single speech processor.
    Lawson DT; Wilson BS; Zerbi M; van den Honert C; Finley CC; Farmer JC; McElveen JT; Roush PA
    Am J Otol; 1998 Nov; 19(6):758-61. PubMed ID: 9831150
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Is psychological status a determinant of speech perception outcomes in highly selected good adolescent cochlear implant users?
    Yucel E; Sennaroglu G
    Int J Pediatr Otorhinolaryngol; 2007 Sep; 71(9):1415-22. PubMed ID: 17586056
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Practical model description of peripheral neural excitation in cochlear implant recipients: 1. Growth of loudness and ECAP amplitude with current.
    Cohen LT
    Hear Res; 2009 Jan; 247(2):87-99. PubMed ID: 19063956
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Initial information on adjustment of speech processor of the cochlear implant].
    Petrov SM
    Vestn Otorinolaringol; 2002; (4):18-20. PubMed ID: 12400125
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.