These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

84 related articles for article (PubMed ID: 7669278)

  • 21. Sensitivity of wheat and rice to low levels of atmospheric ethylene.
    Klassen SP; Bugbee B
    Crop Sci; 2002; 42(3):746-53. PubMed ID: 14552359
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Analysis of remote reflection spectroscopy to monitor plant health.
    Woodhouse R; Heeb M; Berry W; Hoshizaki T; Wood M
    Adv Space Res; 1994 Nov; 14(11):199-202. PubMed ID: 11540181
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Survival of potentially pathogenic human-associated bacteria in the rhizosphere of hydroponically grown wheat.
    Morales A; Garland JL; Lim DV
    FEMS Microbiol Ecol; 1996 Jul; 20(3):155-62. PubMed ID: 11539850
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Growth and gas exchange by lettuce stands in a closed, controlled environment.
    Wheeler RM; Mackowiak CL; Sager JC; Yorio NC; Knott WM; Berry WL
    J Am Soc Hortic Sci; 1994 May; 119(3):610-5. PubMed ID: 11538197
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Very high CO2 reduces photosynthesis, dark respiration and yield in wheat.
    Reuveni J; Bugbee B
    Ann Bot; 1997 Oct; 80(4):539-46. PubMed ID: 11541793
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A system and methodology for measuring volatile organic compounds produced by hydroponic lettuce in a controlled environment.
    Charron CS; Cantliffe DJ; Wheeler RM; Manukian A; Heath RR
    J Am Soc Hortic Sci; 1996 May; 121(3):483-7. PubMed ID: 11539353
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Photomorphogenesis, photosynthesis, and seed yield of wheat plants grown under red light-emitting diodes (LEDs) with and without supplemental blue lighting.
    Goins GD; Yorio NC; Sanwo MM; Brown CS
    J Exp Bot; 1997 Jul; 48(312):1407-13. PubMed ID: 11541074
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Effect of hypobaric conditions on ethylene evolution and growth of lettuce and wheat.
    He C; Davies FT; Lacey RE; Drew MC; Brown DL
    J Plant Physiol; 2003 Nov; 160(11):1341-50. PubMed ID: 14658387
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Control of water and nutrients using a porous tube: a method for growing plants in space.
    Dreschel TW; Sager JC
    HortScience; 1989 Dec; 24(6):944-7. PubMed ID: 11540906
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Development of an analytical method and survey of foods for furan, 2-methylfuran and 3-methylfuran with estimated exposure.
    Becalski A; Hayward S; Krakalovich T; Pelletier L; Roscoe V; Vavasour E
    Food Addit Contam Part A Chem Anal Control Expo Risk Assess; 2010 Jun; 27(6):764-75. PubMed ID: 20485998
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth and photosynthetic responses of wheat plants grown in space.
    Tripathy BC; Brown CS; Levine HG; Krikorian AD
    Plant Physiol; 1996 Mar; 110(3):801-6. PubMed ID: 8819868
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Photosynthetic productivity and vibration/acceleration stress considerations for higher plants in bioregenerative systems.
    Mitchell CA; Knight SL; Pappas T
    Physiologist; 1984; 27(6 Suppl):S29-30. PubMed ID: 11539009
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effect of elevated ozone and varying levels of soil nitrogen in two wheat (Triticum aestivum L.) cultivars: Growth, gas-exchange, antioxidant status, grain yield and quality.
    Pandey AK; Ghosh A; Agrawal M; Agrawal SB
    Ecotoxicol Environ Saf; 2018 Aug; 158():59-68. PubMed ID: 29656165
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Effect of salicylhydroxamic acid on endosperm strength and embryo growth of Lactuca sativa L. cv Waldmann's Green seeds.
    Brooks CA; Mitchell CA
    Plant Physiol; 1988; 86(3):826-9. PubMed ID: 11538237
    [TBL] [Abstract][Full Text] [Related]  

  • 35. From fresh vegetables to the harvest of wheat plants grown in the "SVET" space greenhouse onboard the MIR orbital station.
    Ivanova T; Kostov P; Sapunova S; Dandolov I; Sytchev V; Podolski I; Levinskikh M; Meleshko G; Bingham G; Salisbury F
    J Gravit Physiol; 1997 Jul; 4(2):P71-2. PubMed ID: 11540703
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Bioregenerative life-support systems.
    Mitchell CA
    Am J Clin Nutr; 1994 Nov; 60(5):820S-824S. PubMed ID: 7942592
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Plants for water recycling, oxygen regeneration and food production.
    Bubenheim DL
    Waste Manag Res; 1991 Oct; 9(5):435-43. PubMed ID: 11537696
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Nitrogen uptake by wheat seedlings, interactive effects of four nitrogen sources: NO3-, NO2-, NH4+, and urea.
    Criddle RS; Ward MR; Huffaker RC
    Plant Physiol; 1988; 86(1):166-75. PubMed ID: 11538231
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Morphological responses of wheat to changes in phytochrome photoequilibrium.
    Barnes C; Bugbee B
    Plant Physiol; 1991; 97(1):359-65. PubMed ID: 11538375
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The NASA OCEAN project--an ocean-space analog.
    Chamberland D
    Life Support Biosph Sci; 1996; 2(3-4):183-90. PubMed ID: 11538567
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.