BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 7669778)

  • 1. Residues in a class I tRNA synthetase which determine selectivity of amino acid recognition in the context of tRNA.
    Schmidt E; Schimmel P
    Biochemistry; 1995 Sep; 34(35):11204-10. PubMed ID: 7669778
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Blocking site-to-site translocation of a misactivated amino acid by mutation of a class I tRNA synthetase.
    Bishop AC; Nomanbhoy TK; Schimmel P
    Proc Natl Acad Sci U S A; 2002 Jan; 99(2):585-90. PubMed ID: 11782529
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A present-day aminoacyl-tRNA synthetase with ancestral editing properties.
    Zhu B; Zhao MW; Eriani G; Wang ED
    RNA; 2007 Jan; 13(1):15-21. PubMed ID: 17095543
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Resilience and proteome response of Escherichia coli to high levels of isoleucine mistranslation.
    Pranjic M; Spät P; Semanjski Curkovic M; Macek B; Gruic-Sovulj I; Mocibob M
    Int J Biol Macromol; 2024 Mar; 262(Pt 1):130068. PubMed ID: 38340920
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural basis for substrate and antibiotic recognition by Helicobacter pylori isoleucyl-tRNA synthetase.
    Chen X; Guo Y; Shi J; Wang Y; Guo X; Wu G; Li S; Zhang T
    FEBS Lett; 2024 Mar; 598(5):521-536. PubMed ID: 38246751
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mutations affecting the Rossman fold of isoleucyl-tRNA synthetase are correlated with low-level mupirocin resistance in Staphylococcus aureus.
    Antonio M; McFerran N; Pallen MJ
    Antimicrob Agents Chemother; 2002 Feb; 46(2):438-42. PubMed ID: 11796355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mapping and exome sequencing identifies a mutation in the IARS gene as the cause of hereditary perinatal weak calf syndrome.
    Hirano T; Kobayashi N; Matsuhashi T; Watanabe D; Watanabe T; Takasuga A; Sugimoto M; Sugimoto Y
    PLoS One; 2013; 8(5):e64036. PubMed ID: 23700453
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aminoacyl-tRNA synthetases.
    Rubio Gomez MA; Ibba M
    RNA; 2020 Aug; 26(8):910-936. PubMed ID: 32303649
    [TBL] [Abstract][Full Text] [Related]  

  • 9. tRNA synthetase: tRNA aminoacylation and beyond.
    Pang YL; Poruri K; Martinis SA
    Wiley Interdiscip Rev RNA; 2014; 5(4):461-80. PubMed ID: 24706556
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Modular pathways for editing non-cognate amino acids by human cytoplasmic leucyl-tRNA synthetase.
    Chen X; Ma JJ; Tan M; Yao P; Hu QH; Eriani G; Wang ED
    Nucleic Acids Res; 2011 Jan; 39(1):235-47. PubMed ID: 20805241
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A genomic glimpse of aminoacyl-tRNA synthetases in malaria parasite Plasmodium falciparum.
    Bhatt TK; Kapil C; Khan S; Jairajpuri MA; Sharma V; Santoni D; Silvestrini F; Pizzi E; Sharma A
    BMC Genomics; 2009 Dec; 10():644. PubMed ID: 20042123
    [TBL] [Abstract][Full Text] [Related]  

  • 12. CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase.
    Boniecki MT; Vu MT; Betha AK; Martinis SA
    Proc Natl Acad Sci U S A; 2008 Dec; 105(49):19223-8. PubMed ID: 19020078
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Development of tRNA synthetases and connection to genetic code and disease.
    Schimmel P
    Protein Sci; 2008 Oct; 17(10):1643-52. PubMed ID: 18765819
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Genetic code ambiguity confers a selective advantage on Acinetobacter baylyi.
    Bacher JM; Waas WF; Metzgar D; de Crécy-Lagard V; Schimmel P
    J Bacteriol; 2007 Sep; 189(17):6494-6. PubMed ID: 17616603
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A single residue in leucyl-tRNA synthetase affecting amino acid specificity and tRNA aminoacylation.
    Lue SW; Kelley SO
    Biochemistry; 2007 Apr; 46(15):4466-72. PubMed ID: 17378584
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Restoring species-specific posttransfer editing activity to a synthetase with a defunct editing domain.
    SternJohn J; Hati S; Siliciano PG; Musier-Forsyth K
    Proc Natl Acad Sci U S A; 2007 Feb; 104(7):2127-32. PubMed ID: 17283340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Post-transfer editing mechanism of a D-aminoacyl-tRNA deacylase-like domain in threonyl-tRNA synthetase from archaea.
    Hussain T; Kruparani SP; Pal B; Dock-Bregeon AC; Dwivedi S; Shekar MR; Sureshbabu K; Sankaranarayanan R
    EMBO J; 2006 Sep; 25(17):4152-62. PubMed ID: 16902403
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallization of leucyl-tRNA synthetase complexed with tRNALeu from the archaeon Pyrococcus horikoshii.
    Fukunaga R; Ishitani R; Nureki O; Yokoyama S
    Acta Crystallogr Sect F Struct Biol Cryst Commun; 2005 Jan; 61(Pt 1):30-2. PubMed ID: 16508082
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Artificially ambiguous genetic code confers growth yield advantage.
    Pezo V; Metzgar D; Hendrickson TL; Waas WF; Hazebrouck S; Döring V; Marlière P; Schimmel P; De Crécy-Lagard V
    Proc Natl Acad Sci U S A; 2004 Jun; 101(23):8593-7. PubMed ID: 15163798
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A domain for editing by an archaebacterial tRNA synthetase.
    Beebe K; Merriman E; Ribas De Pouplana L; Schimmel P
    Proc Natl Acad Sci U S A; 2004 Apr; 101(16):5958-63. PubMed ID: 15079065
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 3.