BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

63 related articles for article (PubMed ID: 7669780)

  • 1. Role of the linker region connecting the reductase and heme domains in cytochrome P450BM-3.
    Govindaraj S; Poulos TL
    Biochemistry; 1995 Sep; 34(35):11221-6. PubMed ID: 7669780
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Structure of a cytochrome P450-redox partner electron-transfer complex.
    Sevrioukova IF; Li H; Zhang H; Peterson JA; Poulos TL
    Proc Natl Acad Sci U S A; 1999 Mar; 96(5):1863-8. PubMed ID: 10051560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Mutation and Substrate Binding on the Stability of Cytochrome P450BM3 Variants.
    Geronimo I; Denning CA; Rogers WE; Othman T; Huxford T; Heidary DK; Glazer EC; Payne CM
    Biochemistry; 2016 Jun; 55(25):3594-606. PubMed ID: 27267136
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tryptophan-96 in cytochrome P450 BM3 plays a key role in enzyme survival.
    Ravanfar R; Sheng Y; Gray HB; Winkler JR
    FEBS Lett; 2023 Jan; 597(1):59-64. PubMed ID: 36250256
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Thermal inactivation of the reductase domain of cytochrome P450 BM3.
    Jamakhandi AP; Jeffus BC; Dass VR; Miller GP
    Arch Biochem Biophys; 2005 Jul; 439(2):165-74. PubMed ID: 15950923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The 1.5-A structure of XplA-heme, an unusual cytochrome P450 heme domain that catalyzes reductive biotransformation of royal demolition explosive.
    Sabbadin F; Jackson R; Haider K; Tampi G; Turkenburg JP; Hart S; Bruce NC; Grogan G
    J Biol Chem; 2009 Oct; 284(41):28467-28475. PubMed ID: 19692330
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural and Functional Studies of the Membrane-Binding Domain of NADPH-Cytochrome P450 Oxidoreductase.
    Xia C; Shen AL; Duangkaew P; Kotewong R; Rongnoparut P; Feix J; Kim JP
    Biochemistry; 2019 May; 58(19):2408-2418. PubMed ID: 31009206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Stabilization of the Reductase Domain in the Catalytically Self-Sufficient Cytochrome P450
    Saab-Rincón G; Alwaseem H; Guzmán-Luna V; Olvera L; Fasan R
    Chembiochem; 2018 Mar; 19(6):622-632. PubMed ID: 29276819
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dimer Stabilization by SpyTag/SpyCatcher Coupling of the Reductase Domains of a Chimeric P450 BM3 Monooxygenase from Bacillus spp. Improves its Stability, Activity, and Purification.
    Essert A; Castiglione K
    Chembiochem; 2024 Feb; 25(3):e202300650. PubMed ID: 37994193
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nanodisc reconstitution of flavin mononucleotide binding domain of cytochrome-P450-reductase enables high-resolution NMR probing.
    Krishnarjuna B; Yamazaki T; Anantharamaiah GM; Ramamoorthy A
    Chem Commun (Camb); 2021 May; 57(39):4819-4822. PubMed ID: 33982687
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Engineering of a water-soluble plant cytochrome P450, CYP73A1, and NMR-based orientation of natural and alternate substrates in the active site.
    Schoch GA; Attias R; Belghazi M; Dansette PM; Werck-Reichhart D
    Plant Physiol; 2003 Nov; 133(3):1198-208. PubMed ID: 14576280
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Identification of PpoA from Aspergillus nidulans as a fusion protein of a fatty acid heme dioxygenase/peroxidase and a cytochrome P450.
    Brodhun F; Göbel C; Hornung E; Feussner I
    J Biol Chem; 2009 May; 284(18):11792-805. PubMed ID: 19286665
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Streptomyces coelicolor A3(2) CYP102 protein, a novel fatty acid hydroxylase encoded as a heme domain without an N-terminal redox partner.
    Lamb DC; Lei L; Zhao B; Yuan H; Jackson CJ; Warrilow AG; Skaug T; Dyson PJ; Dawson ES; Kelly SL; Hachey DL; Waterman MR
    Appl Environ Microbiol; 2010 Mar; 76(6):1975-80. PubMed ID: 20097805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Sequestration of a highly reactive intermediate in an evolving pathway for degradation of pentachlorophenol.
    Yadid I; Rudolph J; Hlouchova K; Copley SD
    Proc Natl Acad Sci U S A; 2013 Jun; 110(24):E2182-90. PubMed ID: 23676275
    [TBL] [Abstract][Full Text] [Related]  

  • 15. CYP116B5-SOX: An artificial peroxygenase for drug metabolites production and bioremediation.
    Giuriato D; Catucci G; Correddu D; Nardo GD; Gilardi G
    Biotechnol J; 2024 May; 19(5):e2300664. PubMed ID: 38719620
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Direct aromatic nitration by bacterial P450 enzymes.
    Chen M; Petriti V; Mondal A; Jiang Y; Ding Y
    Methods Enzymol; 2023; 693():307-337. PubMed ID: 37977734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. On the engineering of reductase-based-monooxygenase activity in CYP450 peroxygenases.
    Yadav S; Shaik S; Dubey KD
    Chem Sci; 2024 Apr; 15(14):5174-5186. PubMed ID: 38577361
    [TBL] [Abstract][Full Text] [Related]  

  • 18. P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature.
    Nelson DR; Koymans L; Kamataki T; Stegeman JJ; Feyereisen R; Waxman DJ; Waterman MR; Gotoh O; Coon MJ; Estabrook RW; Gunsalus IC; Nebert DW
    Pharmacogenetics; 1996 Feb; 6(1):1-42. PubMed ID: 8845856
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineered P450 biocatalysts show improved activity and regio-promiscuity in aromatic nitration.
    Zuo R; Zhang Y; Jiang C; Hackett JC; Loria R; Bruner SD; Ding Y
    Sci Rep; 2017 Apr; 7(1):842. PubMed ID: 28405004
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Human Cytochrome P450 3A4 as a Biocatalyst: Effects of the Engineered Linker in Modulation of Coupling Efficiency in 3A4-BMR Chimeras.
    Degregorio D; D'Avino S; Castrignanò S; Di Nardo G; Sadeghi SJ; Catucci G; Gilardi G
    Front Pharmacol; 2017; 8():121. PubMed ID: 28377716
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.