These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
397 related articles for article (PubMed ID: 7669780)
21. The interaction of cytochrome c and the heme domain of cytochrome P-450BM-3 with the reductase domain of cytochrome P-450BM-3. Klein ML; Fulco AJ Biochim Biophys Acta; 1994 Nov; 1201(2):245-50. PubMed ID: 7947938 [TBL] [Abstract][Full Text] [Related]
22. Reconstitution of the fatty acid hydroxylase activity of cytochrome P450BM-3 utilizing its functional domains. Sevrioukova I; Truan G; Peterson JA Arch Biochem Biophys; 1997 Apr; 340(2):231-8. PubMed ID: 9143326 [TBL] [Abstract][Full Text] [Related]
23. Phenylalanine 393 exerts thermodynamic control over the heme of flavocytochrome P450 BM3. Ost TW; Miles CS; Munro AW; Murdoch J; Reid GA; Chapman SK Biochemistry; 2001 Nov; 40(45):13421-9. PubMed ID: 11695888 [TBL] [Abstract][Full Text] [Related]
24. Coding nucleotide, 5' regulatory, and deduced amino acid sequences of P-450BM-3, a single peptide cytochrome P-450:NADPH-P-450 reductase from Bacillus megaterium. Ruettinger RT; Wen LP; Fulco AJ J Biol Chem; 1989 Jul; 264(19):10987-95. PubMed ID: 2544578 [TBL] [Abstract][Full Text] [Related]
25. On the domain structure of cytochrome P450 102 (BM-3): isolation and properties of a 45-kDa FAD/NADP domain. Black SD Biochem Biophys Res Commun; 1994 Aug; 203(1):162-8. PubMed ID: 8074651 [TBL] [Abstract][Full Text] [Related]
26. Electron transfer between the FMN and heme domains of cytochrome P450BM-3. Effects of substrate and CO. Hazzard JT; Govindaraj S; Poulos TL; Tollin G J Biol Chem; 1997 Mar; 272(12):7922-6. PubMed ID: 9065460 [TBL] [Abstract][Full Text] [Related]
27. Redox control of the catalytic cycle of flavocytochrome P-450 BM3. Daff SN; Chapman SK; Turner KL; Holt RA; Govindaraj S; Poulos TL; Munro AW Biochemistry; 1997 Nov; 36(45):13816-23. PubMed ID: 9374858 [TBL] [Abstract][Full Text] [Related]
28. Equilibrium and transient state spectrophotometric studies of the mechanism of reduction of the flavoprotein domain of P450BM-3. Sevrioukova I; Shaffer C; Ballou DP; Peterson JA Biochemistry; 1996 Jun; 35(22):7058-68. PubMed ID: 8679531 [TBL] [Abstract][Full Text] [Related]
29. Analysis of the interactions of cytochrome b5 with flavocytochrome P450 BM3 and its domains. Noble MA; Girvan HM; Smith SJ; Smith WE; Murataliev M; Guzov VM; Feyereisen R; Munro AW Drug Metab Rev; 2007; 39(2-3):599-617. PubMed ID: 17786641 [TBL] [Abstract][Full Text] [Related]
30. Effect of the Insertion of a Glycine Residue into the Loop Spanning Residues 536-541 on the Semiquinone State and Redox Properties of the Flavin Mononucleotide-Binding Domain of Flavocytochrome P450BM-3 from Bacillus megaterium. Chen HC; Swenson RP Biochemistry; 2008 Dec; 47(52):13788-99. PubMed ID: 19055322 [TBL] [Abstract][Full Text] [Related]
31. Fatty acid metabolism, conformational change, and electron transfer in cytochrome P-450(BM-3). Li H; Poulos TL Biochim Biophys Acta; 1999 Nov; 1441(2-3):141-9. PubMed ID: 10570242 [TBL] [Abstract][Full Text] [Related]
32. Protein engineering of the cytochrome P450 monooxygenase from Bacillus megaterium. Urlacher VB; Schmid RD Methods Enzymol; 2004; 388():208-24. PubMed ID: 15289074 [No Abstract] [Full Text] [Related]
33. Functional interactions in cytochrome P450BM3. Fatty acid substrate binding alters electron-transfer properties of the flavoprotein domain. Murataliev MB; Feyereisen R Biochemistry; 1996 Nov; 35(47):15029-37. PubMed ID: 8942669 [TBL] [Abstract][Full Text] [Related]
34. Switching pyridine nucleotide specificity in P450 BM3: mechanistic analysis of the W1046H and W1046A enzymes. Neeli R; Roitel O; Scrutton NS; Munro AW J Biol Chem; 2005 May; 280(18):17634-44. PubMed ID: 15710617 [TBL] [Abstract][Full Text] [Related]
35. Oxygen activation and electron transfer in flavocytochrome P450 BM3. Ost TW; Clark J; Mowat CG; Miles CS; Walkinshaw MD; Reid GA; Chapman SK; Daff S J Am Chem Soc; 2003 Dec; 125(49):15010-20. PubMed ID: 14653735 [TBL] [Abstract][Full Text] [Related]
36. The role of tryptophan 97 of cytochrome P450 BM3 from Bacillus megaterium in catalytic function. Evidence against the 'covalent switching' hypothesis of P-450 electron transfer. Munro AW; Malarkey K; McKnight J; Thomson AJ; Kelly SM; Price NC; Lindsay JG; Coggins JR; Miles JS Biochem J; 1994 Oct; 303 ( Pt 2)(Pt 2):423-8. PubMed ID: 7980400 [TBL] [Abstract][Full Text] [Related]
37. Effect of replacement of ferriprotoporphyrin IX in the haem domain of cytochrome P-450 BM-3 on substrate binding and catalytic activity. Modi S; Primrose WU; Lian LY; Roberts GC Biochem J; 1995 Sep; 310 ( Pt 3)(Pt 3):939-43. PubMed ID: 7575430 [TBL] [Abstract][Full Text] [Related]
38. Cytochrome P450BM-3 (CYP102): regiospecificity of oxidation of omega-unsaturated fatty acids and mechanism-based inactivation. Shirane N; Sui Z; Peterson JA; Ortiz de Montellano PR Biochemistry; 1993 Dec; 32(49):13732-41. PubMed ID: 8257708 [TBL] [Abstract][Full Text] [Related]
39. Roles of key active-site residues in flavocytochrome P450 BM3. Noble MA; Miles CS; Chapman SK; Lysek DA; MacKay AC; Reid GA; Hanzlik RP; Munro AW Biochem J; 1999 Apr; 339 ( Pt 2)(Pt 2):371-9. PubMed ID: 10191269 [TBL] [Abstract][Full Text] [Related]
40. Catalytically self-sufficient P450 CYP102 (cytochrome P450 BM-3): resonance Raman spectral characterization of the heme domain and of the holoenzyme. Hudeèek J; Baumruk V; Anzenbacher P; Munro AW Biochem Biophys Res Commun; 1998 Feb; 243(3):811-5. PubMed ID: 9500975 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]