These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
485 related articles for article (PubMed ID: 7669785)
1. Mechanism of human aldehyde reductase: characterization of the active site pocket. Barski OA; Gabbay KH; Grimshaw CE; Bohren KM Biochemistry; 1995 Sep; 34(35):11264-75. PubMed ID: 7669785 [TBL] [Abstract][Full Text] [Related]
2. Tyrosine-48 is the proton donor and histidine-110 directs substrate stereochemical selectivity in the reduction reaction of human aldose reductase: enzyme kinetics and crystal structure of the Y48H mutant enzyme. Bohren KM; Grimshaw CE; Lai CJ; Harrison DH; Ringe D; Petsko GA; Gabbay KH Biochemistry; 1994 Mar; 33(8):2021-32. PubMed ID: 8117659 [TBL] [Abstract][Full Text] [Related]
4. The C-terminal loop of aldehyde reductase determines the substrate and inhibitor specificity. Barski OA; Gabbay KH; Bohren KM Biochemistry; 1996 Nov; 35(45):14276-80. PubMed ID: 8916913 [TBL] [Abstract][Full Text] [Related]
5. Residues affecting the catalysis and inhibition of rat lens aldose reductase. Carper DA; Hohman TC; Old SE Biochim Biophys Acta; 1995 Jan; 1246(1):67-73. PubMed ID: 7811733 [TBL] [Abstract][Full Text] [Related]
6. An anion binding site in human aldose reductase: mechanistic implications for the binding of citrate, cacodylate, and glucose 6-phosphate. Harrison DH; Bohren KM; Ringe D; Petsko GA; Gabbay KH Biochemistry; 1994 Mar; 33(8):2011-20. PubMed ID: 8117658 [TBL] [Abstract][Full Text] [Related]
7. Aldose reductase as a target for drug design: molecular modeling calculations on the binding of acyclic sugar substrates to the enzyme. De Winter HL; von Itzstein M Biochemistry; 1995 Jul; 34(26):8299-308. PubMed ID: 7599122 [TBL] [Abstract][Full Text] [Related]
8. Human aldose reductase: pK of tyrosine 48 reveals the preferred ionization state for catalysis and inhibition. Grimshaw CE; Bohren KM; Lai CJ; Gabbay KH Biochemistry; 1995 Nov; 34(44):14374-84. PubMed ID: 7578041 [TBL] [Abstract][Full Text] [Related]
9. Catalytic effectiveness of human aldose reductase. Critical role of C-terminal domain. Bohren KM; Grimshaw CE; Gabbay KH J Biol Chem; 1992 Oct; 267(29):20965-70. PubMed ID: 1400412 [TBL] [Abstract][Full Text] [Related]
10. Probing the active site of human aldose reductase. Site-directed mutagenesis of Asp-43, Tyr-48, Lys-77, and His-110. Tarle I; Borhani DW; Wilson DK; Quiocho FA; Petrash JM J Biol Chem; 1993 Dec; 268(34):25687-93. PubMed ID: 8245005 [TBL] [Abstract][Full Text] [Related]
11. The crystal structure of an aldehyde reductase Y50F mutant-NADP complex and its implications for substrate binding. Ye Q; Hyndman D; Green NC; Li L; Jia Z; Flynn TG Chem Biol Interact; 2001 Jan; 130-132(1-3):651-8. PubMed ID: 11306083 [TBL] [Abstract][Full Text] [Related]
12. Studies of the enzymic mechanism of Candida tenuis xylose reductase (AKR 2B5): X-ray structure and catalytic reaction profile for the H113A mutant. Kratzer R; Kavanagh KL; Wilson DK; Nidetzky B Biochemistry; 2004 May; 43(17):4944-54. PubMed ID: 15109252 [TBL] [Abstract][Full Text] [Related]
13. Human aldose reductase: rate constants for a mechanism including interconversion of ternary complexes by recombinant wild-type enzyme. Grimshaw CE; Bohren KM; Lai CJ; Gabbay KH Biochemistry; 1995 Nov; 34(44):14356-65. PubMed ID: 7578039 [TBL] [Abstract][Full Text] [Related]
14. Aldose and aldehyde reductases: structure-function studies on the coenzyme and inhibitor-binding sites. El-Kabbani O; Old SE; Ginell SL; Carper DA Mol Vis; 1999 Sep; 5():20. PubMed ID: 10493777 [TBL] [Abstract][Full Text] [Related]
15. Aldehyde reductase: the role of C-terminal residues in defining substrate and cofactor specificities. Rees-Milton KJ; Jia Z; Green NC; Bhatia M; El-Kabbani O; Flynn TG Arch Biochem Biophys; 1998 Jul; 355(2):137-44. PubMed ID: 9675019 [TBL] [Abstract][Full Text] [Related]
16. Oxidized aldose reductase: in vivo factor not in vitro artifact. Grimshaw CE; Lai CJ Arch Biochem Biophys; 1996 Mar; 327(1):89-97. PubMed ID: 8615700 [TBL] [Abstract][Full Text] [Related]
17. Inhibition of aldose reductase by (2,6-dimethylphenylsulphonyl)nitromethane: possible implications for the nature of an inhibitor binding site and a cause of biphasic kinetics. Ward WH; Cook PN; Mirrlees DJ; Brittain DR; Preston J; Carey F; Tuffin DP; Howe R Adv Exp Med Biol; 1993; 328():301-11. PubMed ID: 8493907 [TBL] [Abstract][Full Text] [Related]
18. Involvement of cysteine residues in catalysis and inhibition of human aldose reductase. Site-directed mutagenesis of Cys-80, -298, and -303. Petrash JM; Harter TM; Devine CS; Olins PO; Bhatnagar A; Liu S; Srivastava SK J Biol Chem; 1992 Dec; 267(34):24833-40. PubMed ID: 1332968 [TBL] [Abstract][Full Text] [Related]
19. Merging the binding sites of aldose and aldehyde reductase for detection of inhibitor selectivity-determining features. Steuber H; Heine A; Podjarny A; Klebe G J Mol Biol; 2008 Jun; 379(5):991-1016. PubMed ID: 18495158 [TBL] [Abstract][Full Text] [Related]
20. Transient-state and steady-state kinetic studies of the mechanism of NADH-dependent aldehyde reduction catalyzed by xylose reductase from the yeast Candida tenuis. Nidetzky B; Klimacek M; Mayr P Biochemistry; 2001 Aug; 40(34):10371-81. PubMed ID: 11513616 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]