BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 7669815)

  • 1. Autophosphorylation of creatine kinase: characterization and identification of a specifically phosphorylated peptide.
    Hemmer W; Furter-Graves EM; Frank G; Wallimann T; Furter R
    Biochim Biophys Acta; 1995 Sep; 1251(2):81-90. PubMed ID: 7669815
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mutation of conserved active-site threonine residues in creatine kinase affects autophosphorylation and enzyme kinetics.
    Stolz M; Hornemann T; Schlattner U; Wallimann T
    Biochem J; 2002 May; 363(Pt 3):785-92. PubMed ID: 11964180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Ca2+/calmodulin-dependent protein kinase II from smooth muscle.
    Zhou ZH; Ando S; Furutsuka D; Ikebe M
    Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):517-25. PubMed ID: 7654190
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Creatine kinase: the reactive cysteine is required for synergism but is nonessential for catalysis.
    Furter R; Furter-Graves EM; Wallimann T
    Biochemistry; 1993 Jul; 32(27):7022-9. PubMed ID: 8334132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. ATP nucleotidylation of creatine kinase.
    David SS; Haley BE
    Biochemistry; 1999 Jun; 38(26):8492-500. PubMed ID: 10387096
    [TBL] [Abstract][Full Text] [Related]  

  • 6. ATP binding site of mitochondrial creatine kinase. Affinity labelling of Asp-335 with C1RATP.
    James P; Wyss M; Lutsenko S; Wallimann T; Carafoli E
    FEBS Lett; 1990 Oct; 273(1-2):139-43. PubMed ID: 2226844
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Photoaffinity labeling of creatine kinase with 2-azido- and 8-azidoadenosine triphosphate: identification of two peptides from the ATP-binding domain.
    Olcott MC; Bradley ML; Haley BE
    Biochemistry; 1994 Oct; 33(39):11935-41. PubMed ID: 7918412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Inactivation of creatine kinase by S-glutathionylation of the active-site cysteine residue.
    Reddy S; Jones AD; Cross CE; Wong PS; Van Der Vliet A
    Biochem J; 2000 May; 347 Pt 3(Pt 3):821-7. PubMed ID: 10769188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mitochondrial creatine kinase from chicken brain. Purification, biophysical characterization, and generation of heterodimeric and heterooctameric molecules with subunits of other creatine kinase isoenzymes.
    Wyss M; Schlegel J; James P; Eppenberger HM; Wallimann T
    J Biol Chem; 1990 Sep; 265(26):15900-8. PubMed ID: 2394753
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Alternative ribosomal initiation gives rise to chicken brain-type creatine kinase isoproteins with heterogeneous amino termini.
    Soldati T; Schäfer BW; Perriard JC
    J Biol Chem; 1990 Mar; 265(8):4498-506. PubMed ID: 2307674
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The isoenzyme-diagnostic regions of muscle-type creatine kinase, the M-260 and M-300 box, are not responsible for its binding to the myofibrillar M-band.
    Stolz M; Kraft T; Wallimann T
    Eur J Cell Biol; 1998 Sep; 77(1):1-9. PubMed ID: 9808283
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Evolution of the creative kinases. The chicken acidic type mitochondrial creatine kinase gene as the first nonmammalian gene.
    Mühlebach SM; Wirz T; Brändle U; Perriard JC
    J Biol Chem; 1996 May; 271(20):11920-9. PubMed ID: 8662608
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Myofibrillar interaction of cytosolic creatine kinase (CK) isoenzymes: allocation of N-terminal binding epitope in MM-CK and BB-CK.
    Stolz M; Wallimann T
    J Cell Sci; 1998 May; 111 ( Pt 9)():1207-16. PubMed ID: 9547297
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystal structure of brain-type creatine kinase at 1.41 A resolution.
    Eder M; Schlattner U; Becker A; Wallimann T; Kabsch W; Fritz-Wolf K
    Protein Sci; 1999 Nov; 8(11):2258-69. PubMed ID: 10595529
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Specific proteolytic modification of creatine kinase isoenzymes. Implication of C-terminal involvement in enzymic activity but not in subunit-subunit recognition.
    Lebherz HG; Burke T; Shackelford JE; Strickler JE; Wilson KJ
    Biochem J; 1986 Jan; 233(1):51-6. PubMed ID: 3006663
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A unique chicken B-creatine kinase gene gives rise to two B-creatine kinase isoproteins with distinct N termini by alternative splicing.
    Wirz T; Brändle U; Soldati T; Hossle JP; Perriard JC
    J Biol Chem; 1990 Jul; 265(20):11656-66. PubMed ID: 2365692
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phosphorylation of chicken brain-type creatine kinase affects a physiologically important kinetic parameter and gives rise to protein microheterogeneity in vivo.
    Quest AF; Soldati T; Hemmer W; Perriard JC; Eppenberger HM; Wallimann T
    FEBS Lett; 1990 Sep; 269(2):457-64. PubMed ID: 2169435
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mutagenesis of two acidic active site residues in human muscle creatine kinase: implications for the catalytic mechanism.
    Cantwell JS; Novak WR; Wang PF; McLeish MJ; Kenyon GL; Babbitt PC
    Biochemistry; 2001 Mar; 40(10):3056-61. PubMed ID: 11258919
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Distinct tissue specific mitochondrial creatine kinases from chicken brain and striated muscle with a conserved CK framework.
    Hossle JP; Schlegel J; Wegmann G; Wyss M; Böhlen P; Eppenberger HM; Wallimann T; Perriard JC
    Biochem Biophys Res Commun; 1988 Feb; 151(1):408-16. PubMed ID: 2831887
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Two nonmuscle myosin II heavy chain isoforms expressed in rabbit brains: filament forming properties, the effects of phosphorylation by protein kinase C and casein kinase II, and location of the phosphorylation sites.
    Murakami N; Chauhan VP; Elzinga M
    Biochemistry; 1998 Feb; 37(7):1989-2003. PubMed ID: 9485326
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.