These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
156 related articles for article (PubMed ID: 7669897)
1. Environments of the four tryptophans in the extracellular domain of human tissue factor: comparison of results from absorption and fluorescence difference spectra of tryptophan replacement mutants with the crystal structure of the wild-type protein. Hasselbacher CA; Rusinova E; Waxman E; Rusinova R; Kohanski RA; Lam W; Guha A; Du J; Lin TC; Polikarpov I Biophys J; 1995 Jul; 69(1):20-9. PubMed ID: 7669897 [TBL] [Abstract][Full Text] [Related]
2. Probing local environments of tryptophan residues in proteins: comparison of 19F nuclear magnetic resonance results with the intrinsic fluorescence of soluble human tissue factor. Zemsky J; Rusinova E; Nemerson Y; Luck LA; Ross JB Proteins; 1999 Dec; 37(4):709-16. PubMed ID: 10651284 [TBL] [Abstract][Full Text] [Related]
3. Contribution of tryptophan residues to the CD spectrum of the extracellular domain of human tissue factor: application in folding studies and prediction of secondary structure. Andersson D; Carlsson U; Freskgård PO Eur J Biochem; 2001 Feb; 268(4):1118-28. PubMed ID: 11179978 [TBL] [Abstract][Full Text] [Related]
4. Circular dichroism and fluorescence spectroscopic properties of the major core protein of feline immunodeficiency virus and its tryptophan mutants. Assignment of the individual contribution of the aromatic sidechains. Yélamos B; Núñez E; Gómez-Gutiérrez J; Datta M; Pacheco B; Peterson DL; Gavilanes F Eur J Biochem; 1999 Dec; 266(3):1081-9. PubMed ID: 10583405 [TBL] [Abstract][Full Text] [Related]
5. Properties of spin and fluorescent labels at a receptor-ligand interface. Owenius R; Osterlund M; Lindgren M; Svensson M; Olsen OH; Persson E; Freskgård PO; Carlsson U Biophys J; 1999 Oct; 77(4):2237-50. PubMed ID: 10512843 [TBL] [Abstract][Full Text] [Related]
6. Intrinsic tryptophans of CRABPI as probes of structure and folding. Clark PL; Liu ZP; Zhang J; Gierasch LM Protein Sci; 1996 Jun; 5(6):1108-17. PubMed ID: 8762142 [TBL] [Abstract][Full Text] [Related]
7. Resolution of fluorescence intensity decays of the two tryptophan residues in glutamine-binding protein from Escherichia coli using single tryptophan mutants. Axelsen PH; Bajzer Z; Prendergast FG; Cottam PF; Ho C Biophys J; 1991 Sep; 60(3):650-9. PubMed ID: 1932553 [TBL] [Abstract][Full Text] [Related]
8. Spectral and metal-binding properties of three single-point tryptophan mutants of the human transferrin N-lobe. He QY; Mason AB; Lyons BA; Tam BM; Nguyen V; MacGillivray RT; Woodworth RC Biochem J; 2001 Mar; 354(Pt 2):423-9. PubMed ID: 11171122 [TBL] [Abstract][Full Text] [Related]
9. Recombinant soluble human tissue factor secreted by Saccharomyces cerevisiae and refolded from Escherichia coli inclusion bodies: glycosylation of mutants, activity and physical characterization. Stone MJ; Ruf W; Miles DJ; Edgington TS; Wright PE Biochem J; 1995 Sep; 310 ( Pt 2)(Pt 2):605-14. PubMed ID: 7654202 [TBL] [Abstract][Full Text] [Related]
10. Similar molecular interactions of factor VII and factor VIIa with the tissue factor region that allosterically regulates enzyme activity. Kelley RF; Yang J; Eigenbrot C; Moran P; Peek M; Lipari MT; Kirchhofer D Biochemistry; 2004 Feb; 43(5):1223-9. PubMed ID: 14756558 [TBL] [Abstract][Full Text] [Related]
11. A fluorescence study of single tryptophan-containing mutants of enzyme IImtl of the Escherichia coli phosphoenolpyruvate-dependent mannitol transport system. Dijkstra DS; Broos J; Lolkema JS; Enequist H; Minke W; Robillard GT Biochemistry; 1996 May; 35(21):6628-34. PubMed ID: 8639611 [TBL] [Abstract][Full Text] [Related]
12. Tryptophan fluorescence of the lux-specific Vibrio harveyi acyl-ACP thioesterase and its tryptophan mutants: structural properties and ligand-induced conformational change. Li J; Szittner R; Meighen EA Biochemistry; 1998 Nov; 37(46):16130-8. PubMed ID: 9819205 [TBL] [Abstract][Full Text] [Related]
13. Structural studies on folding intermediates of serine hydroxymethyltransferase using single tryptophan mutants. Cai K; Schirch V J Biol Chem; 1996 Feb; 271(6):2987-94. PubMed ID: 8621691 [TBL] [Abstract][Full Text] [Related]
14. Investigation of the structural determinants of the intrinsic fluorescence emission of the trp repressor using single tryptophan mutants. Royer CA Biophys J; 1992 Sep; 63(3):741-50. PubMed ID: 1420911 [TBL] [Abstract][Full Text] [Related]
15. Evidence for coupling of folding and function in trp repressor: physical characterization of the superrepressor mutant AV77. Reedstrom RJ; Royer CA J Mol Biol; 1995 Oct; 253(2):266-76. PubMed ID: 7563088 [TBL] [Abstract][Full Text] [Related]
17. Exploring protein solution structure: Second moments of fluorescent spectra report heterogeneity of tryptophan rotamers. Gasymov OK; Abduragimov AR; Glasgow BJ Spectrochim Acta A Mol Biomol Spectrosc; 2015; 150():909-20. PubMed ID: 26119357 [TBL] [Abstract][Full Text] [Related]
18. Structure-function studies of tryptophan mutants of equinatoxin II, a sea anemone pore-forming protein. Malovrh P; Barlic A; Podlesek Z; MaCek P; Menestrina G; Anderluh G Biochem J; 2000 Feb; 346 Pt 1(Pt 1):223-32. PubMed ID: 10657261 [TBL] [Abstract][Full Text] [Related]
19. Formation of local native-like tertiary structures in the slow refolding reaction of human carbonic anhydrase II as monitored by circular dichroism on tryptophan mutants. Andersson D; Freskgård PO; Jonsson BH; Carlsson U Biochemistry; 1997 Apr; 36(15):4623-30. PubMed ID: 9109672 [TBL] [Abstract][Full Text] [Related]
20. Melibiose permease of Escherichia coli: structural organization of cosubstrate binding sites as deduced from tryptophan fluorescence analyses. Mus-Veteau I; Leblanc G Biochemistry; 1996 Sep; 35(37):12053-60. PubMed ID: 8810910 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]