BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 7670377)

  • 1. Simple models for the analysis of binding protein-dependent transport systems.
    Shilton BH; Mowbray SL
    Protein Sci; 1995 Jul; 4(7):1346-55. PubMed ID: 7670377
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mathematical treatment of the kinetics of binding protein dependent transport systems reveals that both the substrate loaded and unloaded binding proteins interact with the membrane components.
    Bohl E; Shuman HA; Boos W
    J Theor Biol; 1995 Jan; 172(1):83-94. PubMed ID: 7891451
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sequence relationships between integral inner membrane proteins of binding protein-dependent transport systems: evolution by recurrent gene duplications.
    Saurin W; Dassa E
    Protein Sci; 1994 Feb; 3(2):325-44. PubMed ID: 8003968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Ratcheting in post-translational protein translocation: a mathematical model.
    Liebermeister W; Rapoport TA; Heinrich R
    J Mol Biol; 2001 Jan; 305(3):643-56. PubMed ID: 11152619
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Conformational changes of three periplasmic receptors for bacterial chemotaxis and transport: the maltose-, glucose/galactose- and ribose-binding proteins.
    Shilton BH; Flocco MM; Nilsson M; Mowbray SL
    J Mol Biol; 1996 Nov; 264(2):350-63. PubMed ID: 8951381
    [TBL] [Abstract][Full Text] [Related]  

  • 6. D-trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis: the binding of trehalose and maltose results in different protein conformational states.
    Herman P; Staiano M; Marabotti A; Varriale A; Scirè A; Tanfani F; Vecer J; Rossi M; D'Auria S
    Proteins; 2006 Jun; 63(4):754-67. PubMed ID: 16532450
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Molecular mechanism of ferricsiderophore passage through the outer membrane receptor proteins of Escherichia coli.
    Chakraborty R; Storey E; van der Helm D
    Biometals; 2007 Jun; 20(3-4):263-74. PubMed ID: 17186377
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Polyamine transport in bacteria and yeast.
    Igarashi K; Kashiwagi K
    Biochem J; 1999 Dec; 344 Pt 3(Pt 3):633-42. PubMed ID: 10585849
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ligand-protein interaction in biomembrane carriers. The induced transition fit of transport catalysis.
    Klingenberg M
    Biochemistry; 2005 Jun; 44(24):8563-70. PubMed ID: 15952762
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Comparison of two compartmental models for describing receptor ligand kinetics and receptor availability in multiple injection PET studies.
    Morris ED; Alpert NM; Fischman AJ
    J Cereb Blood Flow Metab; 1996 Sep; 16(5):841-53. PubMed ID: 8784229
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Structural and functional basis of amino acid specificity in the invertebrate cotransporter KAAT1.
    Miszner A; Peres A; Castagna M; Bettè S; Giovannardi S; Cherubino F; Bossi E
    J Physiol; 2007 Jun; 581(Pt 3):899-913. PubMed ID: 17412764
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A kinetic model for binding protein-mediated arabinose transport.
    Kehres DG
    Protein Sci; 1992 Dec; 1(12):1661-5. PubMed ID: 1304896
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Periplasmic binding protein-dependent transport systems: the membrane-associated components.
    Higgins CF; Gallagher MP; Hyde SC; Mimmack ML; Pearce SR
    Philos Trans R Soc Lond B Biol Sci; 1990 Jan; 326(1236):353-64; discussion 364-5. PubMed ID: 1970642
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic evidence for the uniport mechanism hypothesis in the mitochondrial tricarboxylate transport system.
    De Palma A; Prezioso G; Scalera V
    J Bioenerg Biomembr; 2005 Oct; 37(5):279-87. PubMed ID: 16341772
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computer analysis of radioligand data: advantages, problems, and pitfalls.
    Rodbard D; Lutz RA; Cruciani RA; Guardabasso V; Pesce GO; Munson PJ
    NIDA Res Monogr; 1986; 70():209-22. PubMed ID: 3093877
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A mathematical model for the cell age-dependent decline of creatine in human cell cells.
    Holzhütter HG; Syllm-Rapoport I; Daniel A
    Biomed Biochim Acta; 1984; 43(2):153-8. PubMed ID: 6732753
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Bacterial periplasmic transport systems: structure, mechanism, and evolution.
    Ames GF
    Annu Rev Biochem; 1986; 55():397-425. PubMed ID: 3527048
    [No Abstract]   [Full Text] [Related]  

  • 18. Association dynamics and lateral transport in biological membranes.
    Koppel DE
    J Supramol Struct Cell Biochem; 1981; 17(1):61-7. PubMed ID: 7321054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Amino acid transport in bacteria.
    Haney SA; Oxender DL
    Int Rev Cytol; 1992; 137():37-95. PubMed ID: 1428673
    [No Abstract]   [Full Text] [Related]  

  • 20. [Characteristics of the stoichiometric regulation of glycolysis in prokaryotic cells. A model].
    Ivanitskaia IuG; Sel'kov EE
    Biofizika; 1985; 30(6):1016-21. PubMed ID: 4074758
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.