These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
3. Potential health effects of drinking water disinfection by-products using quantitative structure toxicity relationship. Moudgal CJ; Lipscomb JC; Bruce RM Toxicology; 2000 Jun; 147(2):109-31. PubMed ID: 10874158 [TBL] [Abstract][Full Text] [Related]
4. QSTR with extended topochemical atom (ETA) indices. VI. Acute toxicity of benzene derivatives to tadpoles (Rana japonica). Roy K; Ghosh G J Mol Model; 2006 Feb; 12(3):306-16. PubMed ID: 16249936 [TBL] [Abstract][Full Text] [Related]
5. In silico assessment of the acute toxicity of chemicals: recent advances and new model for multitasking prediction of toxic effect. Kleandrova VV; Luan F; Speck-Planche A; Cordeiro MN Mini Rev Med Chem; 2015; 15(8):677-86. PubMed ID: 25694074 [TBL] [Abstract][Full Text] [Related]
6. Quantitative structure-activity relationships as a tool to assess the comparative toxicity of organic chemicals. Dearden JC; Cronin MT; Dobbs AJ Chemosphere; 1995 Jul; 31(1):2521-8. PubMed ID: 7670864 [TBL] [Abstract][Full Text] [Related]
7. A quantitative structure-toxicity relationships model for the dermal sensitization guinea pig maximization assay. Enslein K; Gombar VK; Blake BW; Maibach HI; Hostynek JJ; Sigman CC; Bagheri D Food Chem Toxicol; 1997; 35(10-11):1091-8. PubMed ID: 9463544 [TBL] [Abstract][Full Text] [Related]
8. Application of QSTRs in the selection of a surrogate toxicity value for a chemical of concern. Moudgal CJ; Venkatapathy R; Choudhury H; Bruce RM; Lipscomb JC Environ Sci Technol; 2003 Nov; 37(22):5228-35. PubMed ID: 14655712 [TBL] [Abstract][Full Text] [Related]
9. Assessment of n-octanol/water partition coefficient: when is the assessment reliable? Gombar VK; Enslein K J Chem Inf Comput Sci; 1996; 36(6):1127-34. PubMed ID: 8941993 [TBL] [Abstract][Full Text] [Related]
10. Development of reliable quantitative structure-toxicity relationship models for toxicity prediction of benzene derivatives using semiempirical descriptors. Singh A; Kumar S; Kapoor A; Kumar P; Kumar A Toxicol Mech Methods; 2023 Mar; 33(3):222-232. PubMed ID: 36042574 [TBL] [Abstract][Full Text] [Related]
11. Assessment of reproductive health effects of hazardous waste. Kipen HM Toxicol Ind Health; 1996; 12(2):211-24. PubMed ID: 8794534 [No Abstract] [Full Text] [Related]
12. Development of Quantitative Structure-Activity Relationship Models for Predicting Chronic Toxicity of Substituted Benzenes to Daphnia Magna. Fan D; Liu J; Wang L; Yang X; Zhang S; Zhang Y; Shi L Bull Environ Contam Toxicol; 2016 May; 96(5):664-70. PubMed ID: 27016939 [TBL] [Abstract][Full Text] [Related]
13. A comparative QSAR study of benzamidines complement-inhibitory activity and benzene derivatives acute toxicity. Basak SC; Gute BD; Lucić B; Nikolić S; Trinajstić N Comput Chem; 2000 Mar; 24(2):181-91. PubMed ID: 10719637 [TBL] [Abstract][Full Text] [Related]
14. The structure-activity relationship of skin carcinogenicity of aromatic hydrocarbons and heterocycles. Zhang L; Sannes K; Shusterman AJ; Hansch C Chem Biol Interact; 1992 Jan; 81(1-2):149-80. PubMed ID: 1730145 [TBL] [Abstract][Full Text] [Related]
15. Potential carcinogenic hazards of non-regulated disinfection by-products: haloquinones, halo-cyclopentene and cyclohexene derivatives, N-halamines, halonitriles, and heterocyclic amines. Bull RJ; Reckhow DA; Li X; Humpage AR; Joll C; Hrudey SE Toxicology; 2011 Aug; 286(1-3):1-19. PubMed ID: 21605618 [TBL] [Abstract][Full Text] [Related]
16. A study on prediction of the bio-toxicity of substituted benzene based on artificial neural network. Gao DW; Wang P; Liang H; Peng YZ J Environ Sci Health B; 2003 Sep; 38(5):571-9. PubMed ID: 12929716 [TBL] [Abstract][Full Text] [Related]
17. Prediction of aquatic toxicity: use of optimization of correlation weights of local graph invariants. Toropov AA; Schultz TW J Chem Inf Comput Sci; 2003; 43(2):560-7. PubMed ID: 12653522 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the computer programs DEREK and TOPKAT to predict bacterial mutagenicity. Deductive Estimate of Risk from Existing Knowledge. Toxicity Prediction by Komputer Assisted Technology. Cariello NF; Wilson JD; Britt BH; Wedd DJ; Burlinson B; Gombar V Mutagenesis; 2002 Jul; 17(4):321-9. PubMed ID: 12110629 [TBL] [Abstract][Full Text] [Related]
20. The reproductive and developmental toxicity of High Flash Aromatic Naphtha. McKee RH; Wong ZA; Schmitt S; Beatty P; Swanson M; Schreiner CA; Schardein JL Toxicol Ind Health; 1990; 6(3-4):441-60. PubMed ID: 2237929 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]