BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

203 related articles for article (PubMed ID: 7670891)

  • 21. Longitudinal neuronal organization of defensive reactions in the midbrain periaqueductal gray region of the rat.
    Depaulis A; Keay KA; Bandler R
    Exp Brain Res; 1992; 90(2):307-18. PubMed ID: 1397145
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Excitatory projections from hypothalamic and midbrain defense regions to nucleus paragigantocellularis lateralis in the rat.
    Li P; Lovick TA
    Exp Neurol; 1985 Sep; 89(3):543-53. PubMed ID: 2993016
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Excitatory projections from the anterior hypothalamus to periaqueductal gray neurons that project to the medulla: a functional anatomical study.
    Semenenko FM; Lumb BM
    Neuroscience; 1999; 94(1):163-74. PubMed ID: 10613506
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Effects of chemical and electrical stimulation of the midbrain on feline T2-T6 spinoreticular and spinal cell activity evoked by cardiopulmonary afferent input.
    Chandler MJ; Garrison DW; Brennan TJ; Foreman RD
    Brain Res; 1989 Sep; 496(1-2):148-64. PubMed ID: 2804627
    [TBL] [Abstract][Full Text] [Related]  

  • 25. In vitro electrophysiological characterization of midbrain periaqueductal gray neurons in female rats: responses to GABA- and Met-enkephalin-related agents.
    Ogawa S; Kow LM; Pfaff DW
    Brain Res; 1994 Dec; 666(2):239-49. PubMed ID: 7882034
    [TBL] [Abstract][Full Text] [Related]  

  • 26. The role of the basolateral nucleus of the amygdala in the pathway between the amygdala and the midbrain periaqueductal gray in the rat.
    Da Costa Gomez TM; Chandler SD; Behbehani MM
    Neurosci Lett; 1996 Aug; 214(1):5-8. PubMed ID: 8873118
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Periaqueductal gray influence on anteroventral cochlear nucleus unitary activity and naloxone effects.
    Pedemonte M; Peña JL; Velluti R
    Hear Res; 1990 Aug; 47(3):219-27. PubMed ID: 2228805
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fos-like immunoreactive neurons following electrical stimulation of the dorsal periaqueductal gray at freezing and escape thresholds.
    Vianna DM; Borelli KG; Ferreira-Netto C; Macedo CE; Brandão ML
    Brain Res Bull; 2003 Dec; 62(3):179-89. PubMed ID: 14698351
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Two forms of inhibition of spinothalamic tract neurons produced by stimulation of the periaqueductal gray and the cerebral cortex.
    Zhang DX; Owens CM; Willis WD
    J Neurophysiol; 1991 Jun; 65(6):1567-79. PubMed ID: 1875263
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Excitatory amino acid receptors mediate asymmetry and lateralization in the descending cardiovascular pathways from the dorsomedial hypothalamus.
    Xavier CH; Ianzer D; Lima AM; Marins FR; Pedrino GR; Vaz G; Menezes GB; Nalivaiko E; Fontes MA
    PLoS One; 2014; 9(11):e112412. PubMed ID: 25397884
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Functional relationship between the hypothalamic vigilance area and PAG vigilance area.
    Duan YF; Winters R; McCabe PM; Green EJ; Huang Y; Schneiderman N
    Physiol Behav; 1997 Sep; 62(3):675-9. PubMed ID: 9272680
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Responses of rat lateral hypothalamic neurons to periaqueductal gray stimulation and nociceptive stimuli.
    Kai Y; Oomura Y; Shimizu N
    Brain Res; 1988 Sep; 461(1):107-17. PubMed ID: 3224271
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Attenuation of the midbrain-evoked defense reaction by selective stimulation of medullary raphe neurons in rats.
    Schenberg LC; Lovick TA
    Am J Physiol; 1995 Dec; 269(6 Pt 2):R1378-89. PubMed ID: 8594940
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Visceral inputs to neurons in the anterior hypothalamus including those that project to the periaqueductal gray: a functional anatomical and electrophysiological study.
    Snowball RK; Semenenko FM; Lumb BM
    Neuroscience; 2000; 99(2):351-61. PubMed ID: 10938441
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Quantitative comparison of inhibition in spinal cord of nociceptive information by stimulation in periaqueductal gray or nucleus raphe magnus of the cat.
    Gebhart GF; Sandkühler J; Thalhammer JG; Zimmermann M
    J Neurophysiol; 1983 Dec; 50(6):1433-45. PubMed ID: 6663336
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Post-synaptic activity evoked in the rostral ventrolateral medullary neurones by stimulation of the defence areas of hypothalamus and midbrain in the rat.
    Gao KM; Li P
    Neurosci Lett; 1993 Oct; 161(2):153-6. PubMed ID: 8272257
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Partial involvement of monoamines and opiates in the inhibition of rat spinal nociceptive neurons evoked by stimulation in midbrain periaqueductal gray or lateral reticular formation.
    Carstens E; Culhane ES; Banisadr R
    Brain Res; 1990 Jul; 522(1):7-13. PubMed ID: 2224516
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Characteristics of midbrain control of spinal nociceptive neurons and nonsomatosensory parameters in the pentobarbital-anesthetized rat.
    Sandkühler J; Willmann E; Fu QG
    J Neurophysiol; 1991 Jan; 65(1):33-48. PubMed ID: 1999730
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Descending inhibitory influences from periaqueductal gray, nucleus raphe magnus, and adjacent reticular formation. II. Effects on medullary dorsal horn nociceptive and nonnociceptive neurons.
    Dostrovsky JO; Shah Y; Gray BG
    J Neurophysiol; 1983 Apr; 49(4):948-60. PubMed ID: 6854363
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Influence of midbrain stimulation on the excitability of neurons in the medial hypothalamus of the rat.
    Pittman QJ; Blume HW; Kearney RE; Renaud LP
    Brain Res; 1979 Sep; 174(1):39-53. PubMed ID: 487122
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.