These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7672318)

  • 1. In situ regulation of methylglyoxal metabolism.
    Cordeiro CA; Freire AP
    Biochem Soc Trans; 1995 May; 23(2):291S. PubMed ID: 7672318
    [No Abstract]   [Full Text] [Related]  

  • 2. Liberation of the triosephosphate isomerase reaction intermediate and its trapping by isomerase, yeast aldolase, and methylglyoxal synthase.
    Iyengar R; Rose IA
    Biochemistry; 1981 Mar; 20(5):1229-35. PubMed ID: 7013791
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ analysis of methylglyoxal metabolism in Saccharomyces cerevisiae.
    Martins AM; Cordeiro CA; Ponces Freire AM
    FEBS Lett; 2001 Jun; 499(1-2):41-4. PubMed ID: 11418108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Methylglyoxal and regulation of its metabolism in microorganisms.
    Inoue Y; Kimura A
    Adv Microb Physiol; 1995; 37():177-227. PubMed ID: 8540421
    [No Abstract]   [Full Text] [Related]  

  • 5. Metabolism of methylglyoxal in microorganisms.
    Cooper RA
    Annu Rev Microbiol; 1984; 38():49-68. PubMed ID: 6093685
    [No Abstract]   [Full Text] [Related]  

  • 6. Methylglyoxal and lipid hydroxperoxide as endogenous cytotoxic molecular species: detoxification and regulation of gene expression in yeasts.
    Inoue Y
    Biotechnol Genet Eng Rev; 1994; 12():467-508. PubMed ID: 7727035
    [No Abstract]   [Full Text] [Related]  

  • 7. Concentration of activated intermediates of the fructose-1,6-bisphosphate aldolase and triosephosphate isomerase reactions.
    Iyengar R; Rose IA
    Biochemistry; 1981 Mar; 20(5):1223-9. PubMed ID: 7013790
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Increased formation of methylglyoxal and protein glycation, oxidation and nitrosation in triosephosphate isomerase deficiency.
    Ahmed N; Battah S; Karachalias N; Babaei-Jadidi R; Horányi M; Baróti K; Hollan S; Thornalley PJ
    Biochim Biophys Acta; 2003 Oct; 1639(2):121-32. PubMed ID: 14559119
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chemistry of proton abstraction by glycolytic enzymes (aldolase, isomerases and pyruvate kinase).
    Rose IA
    Philos Trans R Soc Lond B Biol Sci; 1981 Jun; 293(1063):131-43. PubMed ID: 6115413
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced production of 1,2-propanediol by tpi1 deletion in Saccharomyces cerevisiae.
    Jung JY; Choi ES; Oh MK
    J Microbiol Biotechnol; 2008 Nov; 18(11):1797-802. PubMed ID: 19047824
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Heterologous enzyme-enzyme complex between D-fructose-1,6-bisphosphate aldolase and triosephosphate isomerase from Ceratitis capitata.
    Gavilanes F; Salerno C; Fasella P
    Biochim Biophys Acta; 1981 Jul; 660(1):154-6. PubMed ID: 7272313
    [No Abstract]   [Full Text] [Related]  

  • 12. A new intermediate of the aldolase reaction, the pyruvaldehyde-aldolase-orthophosphate complex.
    Grazi E; Trombetta G
    Biochem J; 1978 Nov; 175(2):361-5. PubMed ID: 743201
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The indirect binding of triose-phosphate isomerase to myofibrils to form a glycolytic enzyme mini-complex.
    Stephan P; Clarke F; Morton D
    Biochim Biophys Acta; 1986 Sep; 873(1):127-35. PubMed ID: 3741878
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction between D-fructose-1,6-bisphosphate aldolase and triosephosphate isomerase. Mutual protection against perchloric acid denaturation.
    Salerno C; Ovádi J
    FEBS Lett; 1982 Feb; 138(2):270-2. PubMed ID: 6279447
    [No Abstract]   [Full Text] [Related]  

  • 15. Yeast protein glycation in vivo by methylglyoxal. Molecular modification of glycolytic enzymes and heat shock proteins.
    Gomes RA; Vicente Miranda H; Silva MS; Graça G; Coelho AV; Ferreira AE; Cordeiro C; Freire AP
    FEBS J; 2006 Dec; 273(23):5273-87. PubMed ID: 17064314
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic interactions of enzymes involved in triosephosphate metabolism.
    Orosz F; Ovádi J
    Eur J Biochem; 1986 Nov; 160(3):615-9. PubMed ID: 3780725
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Cloning of metabolic regulators and regulation of cell proliferation].
    Murata K; Kimura A
    Tanpakushitsu Kakusan Koso; 1986 Sep; 31(11):1010-21. PubMed ID: 3538189
    [No Abstract]   [Full Text] [Related]  

  • 18. Facilitated substrate channeling in a self-assembled trifunctional enzyme complex.
    You C; Myung S; Zhang YH
    Angew Chem Int Ed Engl; 2012 Aug; 51(35):8787-90. PubMed ID: 22821830
    [No Abstract]   [Full Text] [Related]  

  • 19. Effect of prednisolone on glyoxalase 1 in an inbred mouse model of aristolochic acid nephropathy using a proteomics method with fluorogenic derivatization-liquid chromatography-tandem mass spectrometry.
    Chen SM; Lin CE; Chen HH; Cheng YF; Cheng HW; Imai K
    PLoS One; 2020; 15(1):e0227838. PubMed ID: 31968011
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The aldolase-substrate intermediates and their interaction with glyceraldehyde-3-phosphate dehydrogenase in a reconstructed glycolytic system.
    Grazi E; Trombetta G
    Eur J Biochem; 1980 Jun; 107(2):369-73. PubMed ID: 7398648
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.