These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 7672319)

  • 1. Regulation of oxidative and glycogenolytic ATP turnover in exercising rat skeletal muscle.
    Sanderson AL; Kemp GJ; Thompson CH; Radda GK
    Biochem Soc Trans; 1995 May; 23(2):292S. PubMed ID: 7672319
    [No Abstract]   [Full Text] [Related]  

  • 2. Regulation of oxidative and glycogenolytic ATP synthesis in exercising rat skeletal muscle studied by 31P magnetic resonance spectroscopy.
    Kemp GJ; Sanderson AL; Thompson CH; Radda GK
    NMR Biomed; 1996 Sep; 9(6):261-70. PubMed ID: 9073304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Binding of the intramitochondrial ADP and its relationship to adenine nucleotide translocation.
    Wilson DF; Nelson D; Erecińska M
    FEBS Lett; 1982 Jul; 143(2):228-32. PubMed ID: 6288461
    [No Abstract]   [Full Text] [Related]  

  • 4. Improvement of muscular oxidative capacity by training is associated with slight acidosis and ATP depletion in exercising muscles.
    Ravalec X; Le Tallec N; Carré F; de Certaines JD; Le Rumeur E
    Muscle Nerve; 1996 Mar; 19(3):355-61. PubMed ID: 8606701
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Bioenergetic approach to transfer function of human skeletal muscle.
    Binzoni T; Cerretelli P
    J Appl Physiol (1985); 1994 Oct; 77(4):1784-9. PubMed ID: 7836200
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of in vivo postexercise phosphocreatine recovery and resting ATP synthesis flux for the assessment of skeletal muscle mitochondrial function.
    van den Broek NM; Ciapaite J; Nicolay K; Prompers JJ
    Am J Physiol Cell Physiol; 2010 Nov; 299(5):C1136-43. PubMed ID: 20668212
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Interpreting the phosphocreatine time constant in aerobically exercising skeletal muscle.
    Kemp G
    J Appl Physiol (1985); 2009 Jan; 106(1):350; author reply 351. PubMed ID: 19131491
    [No Abstract]   [Full Text] [Related]  

  • 8. Increased oxidative and delayed glycogenolytic ATP synthesis in exercising skeletal muscle of obese (insulin-resistant) Zucker rats.
    Sanderson AL; Kemp GJ; Thompson CH; Radda GK
    Clin Sci (Lond); 1996 Dec; 91(6):691-702. PubMed ID: 8976804
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Theoretical modelling of some spatial and temporal aspects of the mitochondrion/creatine kinase/myofibril system in muscle.
    Kemp GJ; Manners DN; Clark JF; Bastin ME; Radda GK
    Mol Cell Biochem; 1998 Jul; 184(1-2):249-89. PubMed ID: 9746325
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Phosphocreatine synthesis by isolated rat skeletal muscle mitochondria is not dependent upon external ADP: a 31P NMR study.
    Kernec F; Le Tallec N; Nadal L; Bégué JM; Le Rumeur E
    Biochem Biophys Res Commun; 1996 Aug; 225(3):819-25. PubMed ID: 8780696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of opioid narcotic drugs on energy reserves of skeletal muscle. II. Further studies of the glycogenolytic action of methadone.
    Gourley DR
    Biochem Pharmacol; 1974 May; 23(11):1559-68. PubMed ID: 4367954
    [No Abstract]   [Full Text] [Related]  

  • 12. Effect of running to exhaustion on skeletal muscle mitochondria: a biochemical study.
    Terjung RL; Baldwin KM; Molé PA; Klinkerfuss GH; Holloszy JO
    Am J Physiol; 1972 Sep; 223(3):549-54. PubMed ID: 4341294
    [No Abstract]   [Full Text] [Related]  

  • 13. Impaired resting muscle energetics studied by (31)P-NMR in diet-induced obese rats.
    Chanseaume E; Bielicki G; Tardy AL; Renou JP; Freyssenet D; Boirie Y; Morio B
    Obesity (Silver Spring); 2008 Mar; 16(3):572-7. PubMed ID: 18239558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Control of energetic processes in contracting human skeletal muscle.
    Sahlin K
    Biochem Soc Trans; 1991 Apr; 19(2):353-8. PubMed ID: 1889615
    [No Abstract]   [Full Text] [Related]  

  • 15. Control of mitochondrial metabolism by the ATP/ADP ratio.
    Davis EJ; Davis-van Thienen WI
    Biochem Biophys Res Commun; 1978 Aug; 83(4):1260-6. PubMed ID: 697859
    [No Abstract]   [Full Text] [Related]  

  • 16. ATP from glycolysis is required for normal sodium homeostasis in resting fast-twitch rodent skeletal muscle.
    Okamoto K; Wang W; Rounds J; Chambers EA; Jacobs DO
    Am J Physiol Endocrinol Metab; 2001 Sep; 281(3):E479-88. PubMed ID: 11500303
    [TBL] [Abstract][Full Text] [Related]  

  • 17. [Energetics of maximal muscular exertion in man].
    Flandrois R
    J Physiol (Paris); 1979; 75(2):195-205. PubMed ID: 40015
    [No Abstract]   [Full Text] [Related]  

  • 18. [Effect of pyridrol on energy metabolism in the brain during prolonged muscular activity].
    Saratikov AS; Revina TA; Ryzhov AI; Sal'nik BIu
    Biull Eksp Biol Med; 1971 Nov; 72(11):35-7. PubMed ID: 4399789
    [No Abstract]   [Full Text] [Related]  

  • 19. Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis.
    Thompson CH; Kemp GJ; Sanderson AL; Radda GK
    J Appl Physiol (1985); 1995 Jun; 78(6):2131-9. PubMed ID: 7665409
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Regulation of muscle glycogenolytic flux during intense aerobic exercise after caffeine ingestion.
    Chesley A; Howlett RA; Heigenhauser GJ; Hultman E; Spriet LL
    Am J Physiol; 1998 Aug; 275(2):R596-603. PubMed ID: 9688698
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.