These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 7672336)

  • 1. Substrate dependence of the mitochondrial energy status in the isolated working rat heart.
    Keon CA; Tuschiya N; Kashiwaya Y; Sato K; Clarke K; Radda GK; Veech RL
    Biochem Soc Trans; 1995 May; 23(2):307S. PubMed ID: 7672336
    [No Abstract]   [Full Text] [Related]  

  • 2. Effect of substrate on mitochondrial NADH, cytosolic redox state, and phosphorylated compounds in isolated hearts.
    Scholz TD; Laughlin MR; Balaban RS; Kupriyanov VV; Heineman FW
    Am J Physiol; 1995 Jan; 268(1 Pt 2):H82-91. PubMed ID: 7840306
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of calcium on mitochondrial NAD(P)H in paced rat ventricular myocytes.
    White RL; Wittenberg BA
    Biophys J; 1995 Dec; 69(6):2790-9. PubMed ID: 8599685
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Subcellular distribution of phosphagens in isolated perfused rat heart.
    Kauppinen RA; Hiltunen JK; Hassinen IE
    FEBS Lett; 1980 Apr; 112(2):273-6. PubMed ID: 7371865
    [No Abstract]   [Full Text] [Related]  

  • 5. Respiratory control in heart muscle during fatty acid oxidation. Energy state or substrate-level regulation by Ca2+?
    Vuorinen KH; Ala-Rämi A; Yan Y; Ingman P; Hassinen IE
    J Mol Cell Cardiol; 1995 Aug; 27(8):1581-91. PubMed ID: 8523421
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy relationships between cytosolic metabolism and mitochondrial respiration in rat heart.
    Nishiki K; Erecińska M; Wilson DF
    Am J Physiol; 1978 Mar; 234(3):C73-81. PubMed ID: 204195
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Respiratory acidosis and its reversibility in perfused rat heart: regulation of citric acid cycle activity.
    Schaffer SW; Safer B; Ford C; Illingworth J; Williamson JR
    Am J Physiol; 1978 Jan; 234(1):H40-51. PubMed ID: 23681
    [No Abstract]   [Full Text] [Related]  

  • 8. Mitochondrial NADH in the Langendorff rat heart decreases in response to increases in work: increase of cardiac work is associated with decrease of mitochondrial NADH.
    Ashruf JF; Coremans JM; Bruining HA; Ince C
    Adv Exp Med Biol; 1996; 388():275-82. PubMed ID: 8798823
    [No Abstract]   [Full Text] [Related]  

  • 9. Cardiac nucleotide levels and mitochondrial respiration in copper-deficient rats.
    Chao JC; Medeiros DM; Altschuld RA; Hohl CM
    Comp Biochem Physiol Comp Physiol; 1993 Jan; 104(1):163-8. PubMed ID: 8094656
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Retention of Ca2+ by rat liver and rat heart mitochondria: effect of phosphate, Mg2+, and NAD(P) redox state.
    Coelho JL; Vercesi AE
    Arch Biochem Biophys; 1980 Oct; 204(1):141-7. PubMed ID: 7425633
    [No Abstract]   [Full Text] [Related]  

  • 11. Effects of oxygen deprivation on cardiac redox systems.
    Kehrer JP; Paraidathathu T; Lund LG
    Proc West Pharmacol Soc; 1993; 36():45-52. PubMed ID: 8378397
    [No Abstract]   [Full Text] [Related]  

  • 12. Oxygen requirements of the isolated rat heart during hypothermic cardioplegia. Effect of oxygenation on metabolic and functional recovery after five hours of arrest.
    de Wit L; Coetzee A; Kotze J; Lochner A
    J Thorac Cardiovasc Surg; 1988 Feb; 95(2):310-20. PubMed ID: 3339898
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Changes in pyridine nucleotide levels alter oxygen consumption and extra-mitochondrial phosphates in isolated mitochondria: a 31P-NMR and NAD(P)H fluorescence study.
    Koretsky AP; Balaban RS
    Biochim Biophys Acta; 1987 Oct; 893(3):398-408. PubMed ID: 2888484
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Cardiac contractile function, oxygen consumption rate and cytosolic phosphates during inhibition of electron flux by amytal--a 31P-NMR study.
    Kupriyanov VV; Lakomkin VL; Korchazhkina OV; Stepanov VA; Steinschneider AYa ; Kapelko VI
    Biochim Biophys Acta; 1991 Jul; 1058(3):386-99. PubMed ID: 2065062
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peroxynitrite impairs cardiac contractile function by decreasing cardiac efficiency.
    Schulz R; Dodge KL; Lopaschuk GD; Clanachan AS
    Am J Physiol; 1997 Mar; 272(3 Pt 2):H1212-9. PubMed ID: 9087595
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Control of oxidative metabolism in volume-overloaded rat hearts: effects of different lipid substrates.
    Ben Cheikh R; Guendouz A; Moravec J
    Am J Physiol; 1994 May; 266(5 Pt 2):H2090-7. PubMed ID: 8203607
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolic and functional consequences of chronic alcoholism on the rat heart.
    Whitman V; Musselman J; Schuler HG; Fuller EO
    J Mol Cell Cardiol; 1980 Nov; 12(11):1249-62. PubMed ID: 7192320
    [No Abstract]   [Full Text] [Related]  

  • 18. Mitochondrial NAD(P)H, ADP, oxidative phosphorylation, and contraction in isolated heart cells.
    White RL; Wittenberg BA
    Am J Physiol Heart Circ Physiol; 2000 Oct; 279(4):H1849-57. PubMed ID: 11009472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic, ultrastructural, and mechanical changes in the isolated rat heart perfused with aerobic medium in the absence or presence of glucose.
    Dhalla NS; Matoushek RF; Sun CN; Olson RE
    Can J Physiol Pharmacol; 1973 Aug; 51(8):590-603. PubMed ID: 4148272
    [No Abstract]   [Full Text] [Related]  

  • 20. Respiratory control and the integration of heart high-energy phosphate metabolism by mitochondrial creatine kinase.
    Jacobus WE
    Annu Rev Physiol; 1985; 47():707-25. PubMed ID: 3888084
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.