These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

88 related articles for article (PubMed ID: 7672397)

  • 21. [Arbuscular mycorrhizal fungal growth on citrus roots and its correlations with soil available phosphorus content and phosphatase activity].
    Wu Q; Xia R; Zou Y
    Ying Yong Sheng Tai Xue Bao; 2006 Apr; 17(4):685-9. PubMed ID: 16836102
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The rate of formation and decomposition of phosphoryl-phosphatase (Escherichia coli).
    Aldridge WN; Barman TE; Gutfreund H
    Biochem J; 1964 Sep; 92(3):23C-25C. PubMed ID: 4284405
    [No Abstract]   [Full Text] [Related]  

  • 23. Hydrolysis of condensed phosphates by a partially purified phosphatase from cactus phylloclades.
    Mukerji SK; Sanwal GG
    Indian J Biochem; 1964 Sep; 1(3):124-7. PubMed ID: 4311912
    [No Abstract]   [Full Text] [Related]  

  • 24. Effect of soil acidity, soil strength and macropores on root growth and morphology of perennial grass species differing in acid-soil resistance.
    Haling RE; Simpson RJ; Culvenor RA; Lambers H; Richardson AE
    Plant Cell Environ; 2011 Mar; 34(3):444-56. PubMed ID: 21062319
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Diverse effects of arsenic on selected enzyme activities in soil-plant-microbe interactions.
    Lyubun YV; Pleshakova EV; Mkandawire M; Turkovskaya OV
    J Hazard Mater; 2013 Nov; 262():685-90. PubMed ID: 24121674
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship between assemblages of mycorrhizal fungi and bacteria on grass roots.
    Singh BK; Nunan N; Ridgway KP; McNicol J; Young JP; Daniell TJ; Prosser JI; Millard P
    Environ Microbiol; 2008 Feb; 10(2):534-41. PubMed ID: 18081854
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Effect of cadmium on growth, photosynthesis, mineral nutrition and metal accumulation of bana grass and vetiver grass.
    Zhang X; Gao B; Xia H
    Ecotoxicol Environ Saf; 2014 Aug; 106():102-8. PubMed ID: 24836884
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Phosphatase activity and culture conditions of the yeast Candida mycoderma sp. and analysis of organic phosphorus hydrolysis ability.
    Yan M; Yu L; Zhang L; Guo Y; Dai K; Chen Y
    J Environ Sci (China); 2014 Nov; 26(11):2315-21. PubMed ID: 25458687
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Influence of root-exudates concentration on pyrene degradation and soil microbial characteristics in pyrene contaminated soil.
    Xie XM; Liao M; Yang J; Chai JJ; Fang S; Wang RH
    Chemosphere; 2012 Aug; 88(10):1190-5. PubMed ID: 22520968
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Phytoextraction of arsenic from soil by Leersia oryzoides.
    Ampiah-Bonney RJ; Tyson JF; Lanza GR
    Int J Phytoremediation; 2007; 9(1):31-40. PubMed ID: 18246713
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Biochemical characterization of rice trehalose-6-phosphate phosphatases supports distinctive functions of these plant enzymes.
    Shima S; Matsui H; Tahara S; Imai R
    FEBS J; 2007 Mar; 274(5):1192-201. PubMed ID: 17257172
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Enzyme activities in Paeonia ostii rhizosphere and non-rhizosphere soil of Tongling copper mining].
    Liu D; Shen Z; Yan M; Wang Y; Li J
    Ying Yong Sheng Tai Xue Bao; 2006 Jul; 17(7):1315-20. PubMed ID: 17044514
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Effects of nucleoside phosphates and salts on the activity of a heart phosphoprotein phosphatase and its catalytic subunit.
    Li HC; Hsiao KJ
    Eur J Biochem; 1977 Jul; 77(2):383-91. PubMed ID: 19251
    [No Abstract]   [Full Text] [Related]  

  • 34. Acid phosphatase hydrolysis of phosphoric esters.
    DELORY GE; WIBERG GS; HETHERINGTON M
    Can J Biochem Physiol; 1955 Jul; 33(4):539-44. PubMed ID: 13240524
    [No Abstract]   [Full Text] [Related]  

  • 35. Characterization of phosphatidate phosphohydrolase activity associated with chloroplast envelope membranes.
    Joyard J; Douce R
    FEBS Lett; 1979 Jun; 102(1):147-50. PubMed ID: 37120
    [No Abstract]   [Full Text] [Related]  

  • 36. Phosphoprotein phosphatase activity of the progesterone-induced purple glycoprotein of the porcine uterus.
    Roberts RM; Bazer FW
    Biochem Biophys Res Commun; 1976 Jan; 68(2):450-5. PubMed ID: 175796
    [No Abstract]   [Full Text] [Related]  

  • 37. Differential expression of three purple acid phosphatases from potato.
    Zimmermann P; Regierer B; Kossmann J; Frossard E; Amrhein N; Bucher M
    Plant Biol (Stuttg); 2004 Sep; 6(5):519-28. PubMed ID: 15375722
    [TBL] [Abstract][Full Text] [Related]  

  • 38. A characterization of nucleoside diphosphatase in the onion root tip.
    Klohs WD; Goff CW
    J Histochem Cytochem; 1973 May; 21(5):417-25. PubMed ID: 4353821
    [No Abstract]   [Full Text] [Related]  

  • 39. A surface p-nitrophenyl phosphatase of frog gastric mucosa.
    Durbin RP; Kircher AB
    Biochim Biophys Acta; 1973 Oct; 321(2):553-60. PubMed ID: 4357665
    [No Abstract]   [Full Text] [Related]  

  • 40. [Properties and regulation of a phosphatase of Euglena gracilis, biosynthesis and inactivation].
    Liedtke MP; Ohmann E
    Eur J Biochem; 1969 Oct; 10(3):539-48. PubMed ID: 4310545
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.