These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
170 related articles for article (PubMed ID: 7672597)
1. Effects of nullisomic chromosome deficiencies on conjugation events in Tetrahymena thermophila: insufficiency of the parental macronucleus to direct postzygotic development. Ward JG; Davis MC; Allis CD; Herrick G Genetics; 1995 Jul; 140(3):989-1005. PubMed ID: 7672597 [TBL] [Abstract][Full Text] [Related]
2. Effects of the transcription inhibitor actinomycin D on postzygotic development of Tetrahymena thermophila conjugants. Ward JG; Herrick G Dev Biol; 1996 Jan; 173(1):174-84. PubMed ID: 8575619 [TBL] [Abstract][Full Text] [Related]
3. Programmed nuclear death: apoptotic-like degradation of specific nuclei in conjugating Tetrahymena. Davis MC; Ward JG; Herrick G; Allis CD Dev Biol; 1992 Dec; 154(2):419-32. PubMed ID: 1426647 [TBL] [Abstract][Full Text] [Related]
4. MY01, a class XIV myosin, affects developmentally-regulated elimination of the macronucleus during conjugation of Tetrahymena thermophila. Garcés J; Hosein RE; Gavin RH Biol Cell; 2009 Jul; 101(7):393-400. PubMed ID: 19032155 [TBL] [Abstract][Full Text] [Related]
5. Mutation affecting cell separation and macronuclear resorption during conjugation in Tetrahymena thermophila: early expression of the zygotic genotype. Kaczanowski A Dev Genet; 1992; 13(1):58-65. PubMed ID: 1395143 [TBL] [Abstract][Full Text] [Related]
6. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth. Li S; Yin L; Cole ES; Udani RA; Karrer KM Dev Biol; 2006 Jul; 295(2):633-46. PubMed ID: 16712831 [TBL] [Abstract][Full Text] [Related]
7. Macronuclear development in conjugants of Tetrahymena thermophila, which were artificially separated at meiotic prophase. Kiersnowska M; Kaczanowski A; Morga J J Eukaryot Microbiol; 2000; 47(2):139-47. PubMed ID: 10750841 [TBL] [Abstract][Full Text] [Related]
8. A mutational analysis of conjugation in Tetrahymena thermophila. 2. Phenotypes affecting middle and late development: third prezygotic nuclear division, pronuclear exchange, pronuclear fusion, and postzygotic development. Cole ES; Soelter TA Dev Biol; 1997 Sep; 189(2):233-45. PubMed ID: 9299116 [TBL] [Abstract][Full Text] [Related]
9. Timing of the appearance of macronuclear-specific histone variant hv1 and gene expression in developing new macronuclei of Tetrahymena thermophila. Wenkert D; Allis CD J Cell Biol; 1984 Jun; 98(6):2107-17. PubMed ID: 6373790 [TBL] [Abstract][Full Text] [Related]
10. A developmentally regulated gene, ASI2, is required for endocycling in the macronuclear anlagen of Tetrahymena. Yin L; Gater ST; Karrer KM Eukaryot Cell; 2010 Sep; 9(9):1343-53. PubMed ID: 20656911 [TBL] [Abstract][Full Text] [Related]
11. Cytofluorimetric analysis of nuclear DNA during meiosis, fertilization and macronuclear development in the ciliate Tetrahymena pyriformis, syngen 1. Doerder FP; Debault LE J Cell Sci; 1975 May; 17(3):471-93. PubMed ID: 806605 [TBL] [Abstract][Full Text] [Related]
12. Small RNAs in genome rearrangement in Tetrahymena. Mochizuki K; Gorovsky MA Curr Opin Genet Dev; 2004 Apr; 14(2):181-7. PubMed ID: 15196465 [TBL] [Abstract][Full Text] [Related]
13. Germ-line knockout heterokaryons of an essential alpha-tubulin gene enable high-frequency gene replacement and a test of gene transfer from somatic to germ-line nuclei in Tetrahymena thermophila. Hai B; Gorovsky MA Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1310-5. PubMed ID: 9037049 [TBL] [Abstract][Full Text] [Related]
14. Caspase-like activity is required for programmed nuclear elimination during conjugation in Tetrahymena. Ejercito M; Wolfe J J Eukaryot Microbiol; 2003; 50(6):427-9. PubMed ID: 14733434 [TBL] [Abstract][Full Text] [Related]
15. Induction of blocks in nuclear divisions and overcondensation of meiotic chromosomes with cycloheximide during conjugation of Tetrahymena thermophila. Kaczanowski A; Kaczanowska J J Eukaryot Microbiol; 1996; 43(5):380-8. PubMed ID: 8822808 [TBL] [Abstract][Full Text] [Related]
16. Isolation of a Tetrahymena thermophila strain which induced metaphase I meiotic arrest: new pathway of abortive conjugation. Kaczanowski A; Kiersnowska M; Kaczanowska J J Eukaryot Microbiol; 2004; 51(3):351-63. PubMed ID: 15218706 [TBL] [Abstract][Full Text] [Related]
17. Elimination of DNA sequences during macronuclear differentiation in Tetrahymena thermophila, as detected by in situ hybridization. Yokoyama RW; Yao MC Chromosoma; 1982; 85(1):11-22. PubMed ID: 6284452 [TBL] [Abstract][Full Text] [Related]
18. Communication between parental and developing genomes during tetrahymena nuclear differentiation is likely mediated by homologous RNAs. Chalker DL; Fuller P; Yao MC Genetics; 2005 Jan; 169(1):149-60. PubMed ID: 15466428 [TBL] [Abstract][Full Text] [Related]
19. Developmental progression of Tetrahymena through the cell cycle and conjugation. Cole E; Sugai T Methods Cell Biol; 2012; 109():177-236. PubMed ID: 22444146 [TBL] [Abstract][Full Text] [Related]
20. Deletion of the Tetrahymena thermophila rDNA replication fork barrier region disrupts macronuclear rDNA excision and creates a fragile site in the micronuclear genome. Yakisich JS; Kapler GM Nucleic Acids Res; 2006; 34(2):620-34. PubMed ID: 16449202 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]