BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

173 related articles for article (PubMed ID: 7672597)

  • 1. Effects of nullisomic chromosome deficiencies on conjugation events in Tetrahymena thermophila: insufficiency of the parental macronucleus to direct postzygotic development.
    Ward JG; Davis MC; Allis CD; Herrick G
    Genetics; 1995 Jul; 140(3):989-1005. PubMed ID: 7672597
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effects of the transcription inhibitor actinomycin D on postzygotic development of Tetrahymena thermophila conjugants.
    Ward JG; Herrick G
    Dev Biol; 1996 Jan; 173(1):174-84. PubMed ID: 8575619
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Programmed nuclear death: apoptotic-like degradation of specific nuclei in conjugating Tetrahymena.
    Davis MC; Ward JG; Herrick G; Allis CD
    Dev Biol; 1992 Dec; 154(2):419-32. PubMed ID: 1426647
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MY01, a class XIV myosin, affects developmentally-regulated elimination of the macronucleus during conjugation of Tetrahymena thermophila.
    Garcés J; Hosein RE; Gavin RH
    Biol Cell; 2009 Jul; 101(7):393-400. PubMed ID: 19032155
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation affecting cell separation and macronuclear resorption during conjugation in Tetrahymena thermophila: early expression of the zygotic genotype.
    Kaczanowski A
    Dev Genet; 1992; 13(1):58-65. PubMed ID: 1395143
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Progeny of germ line knockouts of ASI2, a gene encoding a putative signal transduction receptor in Tetrahymena thermophila, fail to make the transition from sexual reproduction to vegetative growth.
    Li S; Yin L; Cole ES; Udani RA; Karrer KM
    Dev Biol; 2006 Jul; 295(2):633-46. PubMed ID: 16712831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Macronuclear development in conjugants of Tetrahymena thermophila, which were artificially separated at meiotic prophase.
    Kiersnowska M; Kaczanowski A; Morga J
    J Eukaryot Microbiol; 2000; 47(2):139-47. PubMed ID: 10750841
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A mutational analysis of conjugation in Tetrahymena thermophila. 2. Phenotypes affecting middle and late development: third prezygotic nuclear division, pronuclear exchange, pronuclear fusion, and postzygotic development.
    Cole ES; Soelter TA
    Dev Biol; 1997 Sep; 189(2):233-45. PubMed ID: 9299116
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Timing of the appearance of macronuclear-specific histone variant hv1 and gene expression in developing new macronuclei of Tetrahymena thermophila.
    Wenkert D; Allis CD
    J Cell Biol; 1984 Jun; 98(6):2107-17. PubMed ID: 6373790
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A developmentally regulated gene, ASI2, is required for endocycling in the macronuclear anlagen of Tetrahymena.
    Yin L; Gater ST; Karrer KM
    Eukaryot Cell; 2010 Sep; 9(9):1343-53. PubMed ID: 20656911
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cytofluorimetric analysis of nuclear DNA during meiosis, fertilization and macronuclear development in the ciliate Tetrahymena pyriformis, syngen 1.
    Doerder FP; Debault LE
    J Cell Sci; 1975 May; 17(3):471-93. PubMed ID: 806605
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Small RNAs in genome rearrangement in Tetrahymena.
    Mochizuki K; Gorovsky MA
    Curr Opin Genet Dev; 2004 Apr; 14(2):181-7. PubMed ID: 15196465
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Germ-line knockout heterokaryons of an essential alpha-tubulin gene enable high-frequency gene replacement and a test of gene transfer from somatic to germ-line nuclei in Tetrahymena thermophila.
    Hai B; Gorovsky MA
    Proc Natl Acad Sci U S A; 1997 Feb; 94(4):1310-5. PubMed ID: 9037049
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Caspase-like activity is required for programmed nuclear elimination during conjugation in Tetrahymena.
    Ejercito M; Wolfe J
    J Eukaryot Microbiol; 2003; 50(6):427-9. PubMed ID: 14733434
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Induction of blocks in nuclear divisions and overcondensation of meiotic chromosomes with cycloheximide during conjugation of Tetrahymena thermophila.
    Kaczanowski A; Kaczanowska J
    J Eukaryot Microbiol; 1996; 43(5):380-8. PubMed ID: 8822808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Isolation of a Tetrahymena thermophila strain which induced metaphase I meiotic arrest: new pathway of abortive conjugation.
    Kaczanowski A; Kiersnowska M; Kaczanowska J
    J Eukaryot Microbiol; 2004; 51(3):351-63. PubMed ID: 15218706
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Elimination of DNA sequences during macronuclear differentiation in Tetrahymena thermophila, as detected by in situ hybridization.
    Yokoyama RW; Yao MC
    Chromosoma; 1982; 85(1):11-22. PubMed ID: 6284452
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Communication between parental and developing genomes during tetrahymena nuclear differentiation is likely mediated by homologous RNAs.
    Chalker DL; Fuller P; Yao MC
    Genetics; 2005 Jan; 169(1):149-60. PubMed ID: 15466428
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Developmental progression of Tetrahymena through the cell cycle and conjugation.
    Cole E; Sugai T
    Methods Cell Biol; 2012; 109():177-236. PubMed ID: 22444146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of the Tetrahymena thermophila rDNA replication fork barrier region disrupts macronuclear rDNA excision and creates a fragile site in the micronuclear genome.
    Yakisich JS; Kapler GM
    Nucleic Acids Res; 2006; 34(2):620-34. PubMed ID: 16449202
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.