BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 7673137)

  • 21. Characterization of the elongation factors from calf brain. 3. Properties of the GTPase activity of EF-1 alpha and mode of action of kirromycin.
    Crechet JB; Parmeggiani A
    Eur J Biochem; 1986 Dec; 161(3):655-60. PubMed ID: 3024979
    [TBL] [Abstract][Full Text] [Related]  

  • 22. The interaction of nucleotides with pertussis toxin. Direct evidence for a nucleotide binding site on the toxin regulating the rate of ADP-ribosylation of Ni, the inhibitory regulatory component of adenylyl cyclase.
    Mattera R; Codina J; Sekura RD; Birnbaumer L
    J Biol Chem; 1986 Aug; 261(24):11173-9. PubMed ID: 3090044
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Interaction of guanosine nucleotides with elongation factor 2. II. Effect of ribosomes and magnesium ions on guanosine diphosphate and guanosine triphosphate binding to the enzyme.
    Henriksen O; Robinson EA; Maxwell ES
    J Biol Chem; 1975 Jan; 250(2):725-30. PubMed ID: 1112785
    [TBL] [Abstract][Full Text] [Related]  

  • 24. G13A substitution affects the biochemical and physical properties of the elongation factor 1 alpha. A reduced intrinsic GTPase activity is partially restored by kirromycin.
    Masullo M; Cantiello P; de Paola B; Catanzano F; Arcari P; Bocchini V
    Biochemistry; 2002 Jan; 41(2):628-33. PubMed ID: 11781103
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Regulation of thyroid adenylate cyclase: guanyl nucleotide modulation of thyrotropin receptor-adenylate cyclase function.
    Saltiel AR; Powell-Jones CH; Thomas CG; Nayfeh SN
    Endocrinology; 1981 Nov; 109(5):1578-89. PubMed ID: 6271536
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Synthesis of guanosine 5'-di- and -triphosphate derivatives with modified terminal phosphates: effect on ribosome-elongation factor G-dependent reactions.
    Eckstein F; Bruns W; Parmeggiani A
    Biochemistry; 1975 Nov; 14(23):5225-32. PubMed ID: 1103967
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fusidic and helvolic acid inhibition of elongation factor 2 from the archaeon Sulfolobus solfataricus.
    De Vendittis E; De Paola B; Gogliettino MA; Adinolfi BS; Fiengo A; Duvold T; Bocchini V
    Biochemistry; 2002 Dec; 41(50):14879-84. PubMed ID: 12475236
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Kinetic determination of the effects of ADP-ribosylation on the interaction of eukaryotic elongation factor 2 with ribosomes.
    Nygård O; Nilsson L
    J Biol Chem; 1990 Apr; 265(11):6030-4. PubMed ID: 2318846
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Formation of a binary complex between elongation factor G and guanine nucleotides.
    Arai N; Arai K; Kaziro Y
    J Biochem; 1975 Jul; 78(1):243-6. PubMed ID: 1104601
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Properties of the elongation factor 1 alpha in the thermoacidophilic archaebacterium Sulfolobus solfataricus.
    Masullo M; Raimo G; Parente A; Gambacorta A; De Rosa M; Bocchini V
    Eur J Biochem; 1991 Aug; 199(3):529-37. PubMed ID: 1907914
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Characterization of the ribosomal properties required for formation of a GTPase active complex with the eukaryotic elongation factor 2.
    Nygård O; Nilsson L
    Eur J Biochem; 1989 Feb; 179(3):603-8. PubMed ID: 2537725
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Studies on polypeptide-chain-elongation factors from an extreme thermophile, Thermus thermophilus HB8. 2. Catalytic properties.
    Arai K; Arai N; Nakamura S; Oshima T; Kaziro Y
    Eur J Biochem; 1978 Dec; 92(2):521-31. PubMed ID: 367783
    [TBL] [Abstract][Full Text] [Related]  

  • 33. On the mode of inhibition of eukaryotic protein synthesis by ADP-ribosylation of elongation factor 2.
    Nurten R; Albeniz I; Bermek E
    IUBMB Life; 1999 Nov; 48(5):557-62. PubMed ID: 10637774
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Functional groups of elongation factor 2 involved in interactions with guanosine nucleotides and ribosomes.
    Nurten R; Aktar NB; Bermek E
    FEBS Lett; 1983 Apr; 154(2):391-4. PubMed ID: 6832378
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The elongation factor G carries a catalytic site for GTP hydrolysis, which is revealed by using 2-propanol in the absence of ribosomes.
    De Vendittis E; Masullo M; Bocchini V
    J Biol Chem; 1986 Apr; 261(10):4445-50. PubMed ID: 3007457
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Heterologous expression in Escherichia coli of the gene encoding an archaeal thermoacidophilic elongation factor 2. Properties of the recombinant protein.
    de Vendittis E; Amatruda MR; Raimo G; Bocchini V
    Biochimie; 1997 May; 79(5):303-8. PubMed ID: 9258439
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fluorometric assay of GTPase activity: application to the couple elongation factor eEF-2-ribosome.
    Gonzalo P; Sontag B; Guillot D; Reboud JP
    Anal Biochem; 1995 Feb; 225(1):178-80. PubMed ID: 7778776
    [No Abstract]   [Full Text] [Related]  

  • 38. Binding of aminoacyl-tRNA to ribosomes promoted by elongation factor Tu. Studies on the role of GTP hydrolysis.
    Yokosawa H; Kawakita M; Arai K; Inoue-Yokosawa N; Kaziro Y
    J Biochem; 1975 Apr; 77(4):719-28. PubMed ID: 1097432
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Equilibrium measurements of the interactions of guanine nucleotides with Escherichia coli elongation factor G and the ribosome.
    Baca OG; Rohrbach MS; Bodley JW
    Biochemistry; 1976 Oct; 15(21):4570-4. PubMed ID: 788779
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Structure-function relationships of elongation factor Tu. Isolation and activity of the guanine-nucleotide-binding domain.
    Jensen M; Cool RH; Mortensen KK; Clark BF; Parmeggiani A
    Eur J Biochem; 1989 Jun; 182(2):247-55. PubMed ID: 2661226
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.