These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 7673257)

  • 1. Static and fatigue failure properties of thoracic and lumbar vertebral bodies and their relation to regional density.
    McCubbrey DA; Cody DD; Peterson EL; Kuhn JL; Flynn MJ; Goldstein SA
    J Biomech; 1995 Aug; 28(8):891-9. PubMed ID: 7673257
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of regional variations of the trabecular bone properties on the compressive strength of human vertebral bodies.
    Kim DG; Hunt CA; Zauel R; Fyhrie DP; Yeni YN
    Ann Biomed Eng; 2007 Nov; 35(11):1907-13. PubMed ID: 17690983
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Does thoracic or lumbar spine bone architecture predict vertebral failure strength more accurately than density?
    Lochmüller EM; Pöschl K; Würstlin L; Matsuura M; Müller R; Link TM; Eckstein F
    Osteoporos Int; 2008 Apr; 19(4):537-45. PubMed ID: 17912574
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Correlations between vertebral regional bone mineral density (rBMD) and whole bone fracture load.
    Cody DD; Goldstein SA; Flynn MJ; Brown EB
    Spine (Phila Pa 1976); 1991 Feb; 16(2):146-54. PubMed ID: 2011769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An experimental study on the interface strength between titanium mesh cage and vertebra in reference to vertebral bone mineral density.
    Hasegawa K; Abe M; Washio T; Hara T
    Spine (Phila Pa 1976); 2001 Apr; 26(8):957-63. PubMed ID: 11317121
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Finite element modeling of the human thoracolumbar spine.
    Liebschner MA; Kopperdahl DL; Rosenberg WS; Keaveny TM
    Spine (Phila Pa 1976); 2003 Mar; 28(6):559-65. PubMed ID: 12642762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Human cancellous bone from T12-L1 vertebrae has unique microstructural and trabecular shear stress properties.
    Yeni YN; Kim DG; Divine GW; Johnson EM; Cody DD
    Bone; 2009 Jan; 44(1):130-6. PubMed ID: 18848654
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A biomechanical study of anterior thoracolumbar screw fixation.
    Breeze SW; Doherty BJ; Noble PS; LeBlanc A; Heggeness MH
    Spine (Phila Pa 1976); 1998 Sep; 23(17):1829-31. PubMed ID: 9762738
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Increased microstructural variability is associated with decreased structural strength but with increased measures of structural ductility in human vertebrae.
    Yerramshetty J; Kim DG; Yeni YN
    J Biomech Eng; 2009 Sep; 131(9):094501. PubMed ID: 19725698
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Correlation of vertebral strength topography with 3-dimensional computed tomographic structure.
    Noshchenko A; Plaseied A; Patel VV; Burger E; Baldini T; Yun L
    Spine (Phila Pa 1976); 2013 Feb; 38(4):339-49. PubMed ID: 22869060
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Failure strength of human vertebrae: prediction using bone mineral density measured by DXA and bone volume by micro-CT.
    Perilli E; Briggs AM; Kantor S; Codrington J; Wark JD; Parkinson IH; Fazzalari NL
    Bone; 2012 Jun; 50(6):1416-25. PubMed ID: 22430313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A human cadaver model for determination of pathologic fracture threshold resulting from tumorous destruction of the vertebral body.
    Dimar JR; Voor MJ; Zhang YM; Glassman SD
    Spine (Phila Pa 1976); 1998 Jun; 23(11):1209-14. PubMed ID: 9636973
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Variations in vertebral body dimensions in women measured by 3D-XA: a longitudinal in vivo study.
    Kolta S; Kerkeni S; Travert C; Skalli W; Eastell R; Glüer CC; Roux C
    Bone; 2012 Mar; 50(3):777-83. PubMed ID: 22207276
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of the vertebral strength using a finite element model derived from low-dose biplanar imaging: benefits of subject-specific material properties.
    Sapin-de Brosses E; Jolivet E; Travert C; Mitton D; Skalli W
    Spine (Phila Pa 1976); 2012 Feb; 37(3):E156-62. PubMed ID: 22290213
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Trabecular shear stress amplification and variability in human vertebral cancellous bone: relationship with age, gender, spine level and trabecular architecture.
    Yeni YN; Zelman EA; Divine GW; Kim DG; Fyhrie DP
    Bone; 2008 Mar; 42(3):591-6. PubMed ID: 18180212
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of bone density on vertebral strength and stiffness after percutaneous vertebroplasty.
    Graham J; Ahn C; Hai N; Buch BD
    Spine (Phila Pa 1976); 2007 Aug; 32(18):E505-11. PubMed ID: 17700430
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural features and thickness of the vertebral cortex in the thoracolumbar spine.
    Edwards WT; Zheng Y; Ferrara LA; Yuan HA
    Spine (Phila Pa 1976); 2001 Jan; 26(2):218-25. PubMed ID: 11154545
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A biomechanical study of regional endplate strength and cage morphology as it relates to structural interbody support.
    Lowe TG; Hashim S; Wilson LA; O'Brien MF; Smith DA; Diekmann MJ; Trommeter J
    Spine (Phila Pa 1976); 2004 Nov; 29(21):2389-94. PubMed ID: 15507800
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Vertebral body bone strength: the contribution of individual trabecular element morphology.
    Parkinson IH; Badiei A; Stauber M; Codrington J; Müller R; Fazzalari NL
    Osteoporos Int; 2012 Jul; 23(7):1957-65. PubMed ID: 22086309
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Stiffening effects of cortical bone on vertebral cancellous bone in situ.
    Bryce R; Aspden RM; Wytch R
    Spine (Phila Pa 1976); 1995 May; 20(9):999-1003. PubMed ID: 7631248
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.