These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 7673258)

  • 1. A theoretical model of circulatory interstitial fluid flow and species transport within porous cortical bone.
    Keanini RG; Roer RD; Dillaman RM
    J Biomech; 1995 Aug; 28(8):901-14. PubMed ID: 7673258
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Permeability of cortical bone of canine tibiae.
    Li GP; Bronk JT; An KN; Kelly PJ
    Microvasc Res; 1987 Nov; 34(3):302-10. PubMed ID: 2448591
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theoretical solution for the frictionless rolling contact of cylindrical biphasic articular cartilage layers.
    Ateshian GA; Wang H
    J Biomech; 1995 Nov; 28(11):1341-55. PubMed ID: 8522547
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Deformation-induced hierarchical flows and drag forces in bone canaliculi and matrix microporosity.
    Mak AF; Huang DT; Zhang JD; Tong P
    J Biomech; 1997 Jan; 30(1):11-8. PubMed ID: 8970919
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An asymptotic solution for the contact of two biphasic cartilage layers.
    Ateshian GA; Lai WM; Zhu WB; Mow VC
    J Biomech; 1994 Nov; 27(11):1347-60. PubMed ID: 7798285
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Numerical analysis of extracellular fluid flow and chemical species transport around and within porous bioactive glass.
    GarcĂ­a AJ; Ducheyne P
    J Biomed Mater Res; 1994 Aug; 28(8):947-60. PubMed ID: 7983093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A model for the excitation of osteocytes by mechanical loading-induced bone fluid shear stresses.
    Weinbaum S; Cowin SC; Zeng Y
    J Biomech; 1994 Mar; 27(3):339-60. PubMed ID: 8051194
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electromechanical potentials in cortical bone--I. A continuum approach.
    Salzstein RA; Pollack SR; Mak AF; Petrov N
    J Biomech; 1987; 20(3):261-70. PubMed ID: 3584151
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On bone adaptation due to venous stasis.
    Wang L; Fritton SP; Weinbaum S; Cowin SC
    J Biomech; 2003 Oct; 36(10):1439-51. PubMed ID: 14499293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A fiber matrix model for fluid flow and streaming potentials in the canaliculi of an osteon.
    Zeng Y; Cowin SC; Weinbaum S
    Ann Biomed Eng; 1994; 22(3):280-92. PubMed ID: 7978549
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Estimation of the poroelastic parameters of cortical bone.
    Smit TH; Huyghe JM; Cowin SC
    J Biomech; 2002 Jun; 35(6):829-35. PubMed ID: 12021003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of interstitial bone microcracks on strain-induced fluid flow.
    Nguyen VH; Lemaire T; Naili S
    Biomech Model Mechanobiol; 2011 Dec; 10(6):963-72. PubMed ID: 21253808
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of fatigue loading and associated matrix microdamage on bone blood flow and interstitial fluid flow.
    Muir P; Sample SJ; Barrett JG; McCarthy J; Vanderby R; Markel MD; Prokuski LJ; Kalscheur VL
    Bone; 2007 Apr; 40(4):948-56. PubMed ID: 17234467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interstitial fluid flow in tendons or ligaments: a porous medium finite element simulation.
    Butler SL; Kohles SS; Thielke RJ; Chen C; Vanderby R
    Med Biol Eng Comput; 1997 Nov; 35(6):742-6. PubMed ID: 9538555
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling of neutral solute transport in a dynamically loaded porous permeable gel: implications for articular cartilage biosynthesis and tissue engineering.
    Mauck RL; Hung CT; Ateshian GA
    J Biomech Eng; 2003 Oct; 125(5):602-14. PubMed ID: 14618919
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Interstitial fluid flow within bone canaliculi and electro-chemo-mechanical features of the canalicular milieu: a multi-parametric sensitivity analysis.
    Sansalone V; Kaiser J; Naili S; Lemaire T
    Biomech Model Mechanobiol; 2013 Jun; 12(3):533-53. PubMed ID: 22869342
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A fiber matrix model for interstitial fluid flow and permeability in ligaments and tendons.
    Chen CT; Malkus DS; Vanderby R
    Biorheology; 1998; 35(2):103-18. PubMed ID: 10193483
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Contribution of fluid in bone extravascular matrix to strain-rate dependent stiffening of bone tissue - A poroelastic study.
    Le Pense S; Chen Y
    J Mech Behav Biomed Mater; 2017 Jan; 65():90-101. PubMed ID: 27569757
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Textural versus electrostatic exclusion-enrichment effects in the effective chemical transport within the cortical bone: a numerical investigation.
    Lemaire T; Kaiser J; Naili S; Sansalone V
    Int J Numer Method Biomed Eng; 2013 Nov; 29(11):1223-42. PubMed ID: 23804591
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Blood and interstitial flow in the hierarchical pore space architecture of bone tissue.
    Cowin SC; Cardoso L
    J Biomech; 2015 Mar; 48(5):842-54. PubMed ID: 25666410
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.